Raja Savanth Reddy Chityala, Sandhya Bishwakarma, Kaival Malav Shah, Ashmita Pandey, Muhammad Saad
{"title":"Can artificial intelligence lower the global sudden cardiac death rate? A narrative review.","authors":"Raja Savanth Reddy Chityala, Sandhya Bishwakarma, Kaival Malav Shah, Ashmita Pandey, Muhammad Saad","doi":"10.1016/j.jelectrocard.2025.153882","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>WHO defines SCD as sudden unexpected death either within 1 h of symptom onset (witnessed) or within 24 h of having been observed alive and symptom-free (unwitnessed). Sudden cardiac arrest is a major cause of mortality worldwide, with survival to hospital discharge for hospital cardiac arrest and in-hospital cardiac arrest being only 9.3 % and 21.2 %, respectively, despite treatment highlighting the importance of effectively predicting and preventing cardiac arrest. This literature review aims to explore the role and application of AI (Artificial Intelligence) in predicting and preventing sudden cardiac arrest.</p><p><strong>Material and methods: </strong>Eligible studies were searched from PubMed and Web of Science. The inclusion criteria were fulfilled if sudden cardiac death prediction and prevention, artificial intelligence, machine learning, and deep learning were included.</p><p><strong>Conclusions: </strong>Artificial intelligence, machine learning, and deep learning have shown remarkable prospects in SCA risk stratification, which can improve the survival rate from SCA. Nonetheless, they have not been adequately trained and tested, necessitating further studies with explainable techniques, larger sample sizes, external validation, more diverse patient samples, multimodal tools, ethics, and bias mitigation to unlock their full potential.</p>","PeriodicalId":15606,"journal":{"name":"Journal of electrocardiology","volume":"89 ","pages":"153882"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrocardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jelectrocard.2025.153882","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: WHO defines SCD as sudden unexpected death either within 1 h of symptom onset (witnessed) or within 24 h of having been observed alive and symptom-free (unwitnessed). Sudden cardiac arrest is a major cause of mortality worldwide, with survival to hospital discharge for hospital cardiac arrest and in-hospital cardiac arrest being only 9.3 % and 21.2 %, respectively, despite treatment highlighting the importance of effectively predicting and preventing cardiac arrest. This literature review aims to explore the role and application of AI (Artificial Intelligence) in predicting and preventing sudden cardiac arrest.
Material and methods: Eligible studies were searched from PubMed and Web of Science. The inclusion criteria were fulfilled if sudden cardiac death prediction and prevention, artificial intelligence, machine learning, and deep learning were included.
Conclusions: Artificial intelligence, machine learning, and deep learning have shown remarkable prospects in SCA risk stratification, which can improve the survival rate from SCA. Nonetheless, they have not been adequately trained and tested, necessitating further studies with explainable techniques, larger sample sizes, external validation, more diverse patient samples, multimodal tools, ethics, and bias mitigation to unlock their full potential.
期刊介绍:
The Journal of Electrocardiology is devoted exclusively to clinical and experimental studies of the electrical activities of the heart. It seeks to contribute significantly to the accuracy of diagnosis and prognosis and the effective treatment, prevention, or delay of heart disease. Editorial contents include electrocardiography, vectorcardiography, arrhythmias, membrane action potential, cardiac pacing, monitoring defibrillation, instrumentation, drug effects, and computer applications.