Reduced white matter integrity and disrupted brain network in children with type 2 and 3 spinal muscular atrophy.

IF 4.1 2区 医学 Q1 CLINICAL NEUROLOGY Journal of Neurodevelopmental Disorders Pub Date : 2025-01-24 DOI:10.1186/s11689-025-09592-x
Huirong Nie, Shasha Lan, Huan Wang, Pei Xiang, Mengzhen Yan, Yang Fan, Wanqing Shen, Yijuan Li, Wen Tang, Zhiyun Yang, Yujian Liang, Yingqian Chen
{"title":"Reduced white matter integrity and disrupted brain network in children with type 2 and 3 spinal muscular atrophy.","authors":"Huirong Nie, Shasha Lan, Huan Wang, Pei Xiang, Mengzhen Yan, Yang Fan, Wanqing Shen, Yijuan Li, Wen Tang, Zhiyun Yang, Yujian Liang, Yingqian Chen","doi":"10.1186/s11689-025-09592-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spinal muscular atrophy (SMA) is caused by reduced expression of survival motor neuron (SMN) protein. Previous studies indicated SMA causes not only lower motor neuron degeneration but also extensive brain involvement. This study aimed to investigate the changes of brain white matter and structural network using diffusion tensor imaging (DTI) in children with type 2 and 3 SMA.</p><p><strong>Methods: </strong>Forty-two type 2 and 3 pediatric SMA patients and 42 age- and gender-matched healthy controls (HC) were prospectively enrolled in this study. The tract-based spatial statistics (TBSS) was used to assess white matter integrity and the structural network properties were calculated based on DTI white matter fiber tracking and the graph theory approach. A partial correlation was performed to explore the relationship between white matter parameters and clinical characteristics.</p><p><strong>Results: </strong>In total, 42 patients (mean age, 10.86 ± 4.07 years; 23 men) were included. TBSS analysis revealed widespread white matter changes in SMA patients. The SMA patients showed changes in multiple small-world and network efficiency parameters. Compared to the HC group, SMA showed increased characteristic path length (L<sub>p</sub>), normalized clustering coefficient (γ), small-world characteristic (σ), and decreased global efficiency (E<sub>glob</sub>) (all p < 0.05). In the node properties, right supramarginal gyrus, right orbital part of superior frontal gyrus, right supplementary motor area, and left median cingulate and paracingulate gyri changed in SMA patients. A decreased axial diffusivity (AD) value was associated with lower Hammersmith Functional Motor Scale-Expanded scores (r = 0.45, p = 0.02), which means that the symptoms of SMA patients are more severe.</p><p><strong>Conclusions: </strong>This study found white matter and DTI-based brain network abnormalities in SMA patients, suggesting SMN protein deficiency may affect white matter development.</p>","PeriodicalId":16530,"journal":{"name":"Journal of Neurodevelopmental Disorders","volume":"17 1","pages":"3"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761759/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurodevelopmental Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s11689-025-09592-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Spinal muscular atrophy (SMA) is caused by reduced expression of survival motor neuron (SMN) protein. Previous studies indicated SMA causes not only lower motor neuron degeneration but also extensive brain involvement. This study aimed to investigate the changes of brain white matter and structural network using diffusion tensor imaging (DTI) in children with type 2 and 3 SMA.

Methods: Forty-two type 2 and 3 pediatric SMA patients and 42 age- and gender-matched healthy controls (HC) were prospectively enrolled in this study. The tract-based spatial statistics (TBSS) was used to assess white matter integrity and the structural network properties were calculated based on DTI white matter fiber tracking and the graph theory approach. A partial correlation was performed to explore the relationship between white matter parameters and clinical characteristics.

Results: In total, 42 patients (mean age, 10.86 ± 4.07 years; 23 men) were included. TBSS analysis revealed widespread white matter changes in SMA patients. The SMA patients showed changes in multiple small-world and network efficiency parameters. Compared to the HC group, SMA showed increased characteristic path length (Lp), normalized clustering coefficient (γ), small-world characteristic (σ), and decreased global efficiency (Eglob) (all p < 0.05). In the node properties, right supramarginal gyrus, right orbital part of superior frontal gyrus, right supplementary motor area, and left median cingulate and paracingulate gyri changed in SMA patients. A decreased axial diffusivity (AD) value was associated with lower Hammersmith Functional Motor Scale-Expanded scores (r = 0.45, p = 0.02), which means that the symptoms of SMA patients are more severe.

Conclusions: This study found white matter and DTI-based brain network abnormalities in SMA patients, suggesting SMN protein deficiency may affect white matter development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
4.10%
发文量
58
审稿时长
>12 weeks
期刊介绍: Journal of Neurodevelopmental Disorders is an open access journal that integrates current, cutting-edge research across a number of disciplines, including neurobiology, genetics, cognitive neuroscience, psychiatry and psychology. The journal’s primary focus is on the pathogenesis of neurodevelopmental disorders including autism, fragile X syndrome, tuberous sclerosis, Turner Syndrome, 22q Deletion Syndrome, Prader-Willi and Angelman Syndrome, Williams syndrome, lysosomal storage diseases, dyslexia, specific language impairment and fetal alcohol syndrome. With the discovery of specific genes underlying neurodevelopmental syndromes, the emergence of powerful tools for studying neural circuitry, and the development of new approaches for exploring molecular mechanisms, interdisciplinary research on the pathogenesis of neurodevelopmental disorders is now increasingly common. Journal of Neurodevelopmental Disorders provides a unique venue for researchers interested in comparing and contrasting mechanisms and characteristics related to the pathogenesis of the full range of neurodevelopmental disorders, sharpening our understanding of the etiology and relevant phenotypes of each condition.
期刊最新文献
The striatal matrix compartment is expanded in autism spectrum disorder. An exploratory fetal MRI study examining the impact of 22q11.2 microdeletion syndrome on early brain growth. Validation of the Food Safe Zone questionnaire for families of individuals with Prader-Willi syndrome. Regional hippocampal thinning and gyrification abnormalities and associated cognition in children with prenatal alcohol exposure. A randomized, placebo-controlled, cross-over trial of ketamine in Rett syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1