Computational modeling of the anti-inflammatory complexes of IL37

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of molecular graphics & modelling Pub Date : 2025-01-18 DOI:10.1016/j.jmgm.2025.108952
Inci Sardag , Zeynep Sevval Duvenci , Serkan Belkaya , Emel Timucin
{"title":"Computational modeling of the anti-inflammatory complexes of IL37","authors":"Inci Sardag ,&nbsp;Zeynep Sevval Duvenci ,&nbsp;Serkan Belkaya ,&nbsp;Emel Timucin","doi":"10.1016/j.jmgm.2025.108952","DOIUrl":null,"url":null,"abstract":"<div><div>Interleukin (IL) 37 is an anti-inflammatory cytokine belonging to the IL1 protein family. Owing to its pivotal role in modulating immune responses, elucidating the IL37 complex structures holds substantial therapeutic promise for various autoimmune disorders and cancers. However, none of the structures of IL37 complexes have been experimentally characterized. This computational study aims to address this gap through molecular modeling and classical molecular dynamics simulations. We modeled all protein–protein complexes of IL37 using a range of methods from homology modeling to AlphaFold2 multimer predictions. Models that successfully recapitulated experimental features underwent further analysis through molecular dynamics simulations. As positive controls, binary and ternary complexes of IL18 from PDB were included for comparison. Several key findings emerged from the comparative analysis of IL37 and IL18 complexes. IL37 complexes exhibited higher mobility than the IL18 complexes. Simulations of the IL37-IL18R<span><math><mi>α</mi></math></span> complex revealed altered receptor conformations capable of accommodating a dimeric IL37, with the N-terminal loop of IL37 contributing significantly to complex mobility. Additionally, the glycosyl chain on N297 of IL18R<span><math><mi>α</mi></math></span>, which contours one edge of the cytokine binding surface, acted as a steric block against the N-terminal loop of IL37. Further, investigations into interactions between IL37 and IL18BP suggested that a binding mode homologous to IL18 was unstable for IL37, indicating an alternative binding mechanism. Altogether, this study accesses to the structure and dynamics of IL37 complexes, revealing the structural underpinnings of the IL37’s modulatory effect on the IL18 signaling pathway.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"136 ","pages":"Article 108952"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325000129","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Interleukin (IL) 37 is an anti-inflammatory cytokine belonging to the IL1 protein family. Owing to its pivotal role in modulating immune responses, elucidating the IL37 complex structures holds substantial therapeutic promise for various autoimmune disorders and cancers. However, none of the structures of IL37 complexes have been experimentally characterized. This computational study aims to address this gap through molecular modeling and classical molecular dynamics simulations. We modeled all protein–protein complexes of IL37 using a range of methods from homology modeling to AlphaFold2 multimer predictions. Models that successfully recapitulated experimental features underwent further analysis through molecular dynamics simulations. As positive controls, binary and ternary complexes of IL18 from PDB were included for comparison. Several key findings emerged from the comparative analysis of IL37 and IL18 complexes. IL37 complexes exhibited higher mobility than the IL18 complexes. Simulations of the IL37-IL18Rα complex revealed altered receptor conformations capable of accommodating a dimeric IL37, with the N-terminal loop of IL37 contributing significantly to complex mobility. Additionally, the glycosyl chain on N297 of IL18Rα, which contours one edge of the cytokine binding surface, acted as a steric block against the N-terminal loop of IL37. Further, investigations into interactions between IL37 and IL18BP suggested that a binding mode homologous to IL18 was unstable for IL37, indicating an alternative binding mechanism. Altogether, this study accesses to the structure and dynamics of IL37 complexes, revealing the structural underpinnings of the IL37’s modulatory effect on the IL18 signaling pathway.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
期刊最新文献
Las Vegas algorithm in the prediction of intrinsic solubility of drug-like compounds The ability of ZnO and MgO nanocages for adsorption and sensing performance of anticancer drug detection Effect of the mixture composition of Acetonitrile/Benzene on excited state intramolecular proton transfer in 3-hydroxyflavone, theoretical insights: QTAIM, NBO, NLO behavior, thermodynamic and kinetic aspects Exploring tiopronin adsorption on pristine and Al/Ga-doped boron nitride nanoclusters: A DFT approach for enhanced drug delivery The computational density functional theory (DFT) investigating the CO gas adsorption on magnesium porphyrin nanorings (Mg4@PNR4)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1