{"title":"Computational modeling of the anti-inflammatory complexes of IL37","authors":"Inci Sardag , Zeynep Sevval Duvenci , Serkan Belkaya , Emel Timucin","doi":"10.1016/j.jmgm.2025.108952","DOIUrl":null,"url":null,"abstract":"<div><div>Interleukin (IL) 37 is an anti-inflammatory cytokine belonging to the IL1 protein family. Owing to its pivotal role in modulating immune responses, elucidating the IL37 complex structures holds substantial therapeutic promise for various autoimmune disorders and cancers. However, none of the structures of IL37 complexes have been experimentally characterized. This computational study aims to address this gap through molecular modeling and classical molecular dynamics simulations. We modeled all protein–protein complexes of IL37 using a range of methods from homology modeling to AlphaFold2 multimer predictions. Models that successfully recapitulated experimental features underwent further analysis through molecular dynamics simulations. As positive controls, binary and ternary complexes of IL18 from PDB were included for comparison. Several key findings emerged from the comparative analysis of IL37 and IL18 complexes. IL37 complexes exhibited higher mobility than the IL18 complexes. Simulations of the IL37-IL18R<span><math><mi>α</mi></math></span> complex revealed altered receptor conformations capable of accommodating a dimeric IL37, with the N-terminal loop of IL37 contributing significantly to complex mobility. Additionally, the glycosyl chain on N297 of IL18R<span><math><mi>α</mi></math></span>, which contours one edge of the cytokine binding surface, acted as a steric block against the N-terminal loop of IL37. Further, investigations into interactions between IL37 and IL18BP suggested that a binding mode homologous to IL18 was unstable for IL37, indicating an alternative binding mechanism. Altogether, this study accesses to the structure and dynamics of IL37 complexes, revealing the structural underpinnings of the IL37’s modulatory effect on the IL18 signaling pathway.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"136 ","pages":"Article 108952"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325000129","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Interleukin (IL) 37 is an anti-inflammatory cytokine belonging to the IL1 protein family. Owing to its pivotal role in modulating immune responses, elucidating the IL37 complex structures holds substantial therapeutic promise for various autoimmune disorders and cancers. However, none of the structures of IL37 complexes have been experimentally characterized. This computational study aims to address this gap through molecular modeling and classical molecular dynamics simulations. We modeled all protein–protein complexes of IL37 using a range of methods from homology modeling to AlphaFold2 multimer predictions. Models that successfully recapitulated experimental features underwent further analysis through molecular dynamics simulations. As positive controls, binary and ternary complexes of IL18 from PDB were included for comparison. Several key findings emerged from the comparative analysis of IL37 and IL18 complexes. IL37 complexes exhibited higher mobility than the IL18 complexes. Simulations of the IL37-IL18R complex revealed altered receptor conformations capable of accommodating a dimeric IL37, with the N-terminal loop of IL37 contributing significantly to complex mobility. Additionally, the glycosyl chain on N297 of IL18R, which contours one edge of the cytokine binding surface, acted as a steric block against the N-terminal loop of IL37. Further, investigations into interactions between IL37 and IL18BP suggested that a binding mode homologous to IL18 was unstable for IL37, indicating an alternative binding mechanism. Altogether, this study accesses to the structure and dynamics of IL37 complexes, revealing the structural underpinnings of the IL37’s modulatory effect on the IL18 signaling pathway.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.