{"title":"Synthetic Microbial Communities Enhance Pepper Growth and Root Morphology by Regulating Rhizosphere Microbial Communities.","authors":"Tian You, Qiumei Liu, Meng Chen, Siyu Tang, Lijun Ou, Dejun Li","doi":"10.3390/microorganisms13010148","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic microbial community (SynCom) application is efficient in promoting crop yield and soil health. However, few studies have been conducted to enhance pepper growth via modulating rhizosphere microbial communities by SynCom application. This study aimed to investigate how SynCom inoculation at the seedling stage impacts pepper growth by modulating the rhizosphere microbiome using high-throughput sequencing technology. SynCom inoculation significantly increased shoot height, stem diameter, fresh weight, dry weight, chlorophyll content, leaf number, root vigor, root tips, total root length, and root-specific surface area of pepper by 20.9%, 36.33%, 68.84%, 64.34%, 29.65%, 27.78%, 117.42%, 35.4%, 21.52%, and 39.76%, respectively, relative to the control. The Chao index of the rhizosphere microbial community and Bray-Curtis dissimilarity of the fungal community significantly increased, while Bray-Curtis dissimilarity of the bacterial community significantly decreased by SynCom inoculation. The abundances of key taxa such as <i>Scedosporium</i>, <i>Sordariomycetes</i>, <i>Pseudarthrobacter</i>, <i>norankSBR1031</i>, and <i>norankA4b</i> significantly increased with SynCom inoculation, and positively correlated with indices of pepper growth. Our findings suggest that SynCom inoculation can effectively enhance pepper growth and regulate root morphology by regulating rhizosphere microbial communities and increasing key taxa abundance like <i>Sordariomycetes</i> and <i>Pseudarthrobacter</i>, thereby benefiting nutrient acquisition, resistance improvement, and pathogen resistance of crops to ensure sustainability.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13010148","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic microbial community (SynCom) application is efficient in promoting crop yield and soil health. However, few studies have been conducted to enhance pepper growth via modulating rhizosphere microbial communities by SynCom application. This study aimed to investigate how SynCom inoculation at the seedling stage impacts pepper growth by modulating the rhizosphere microbiome using high-throughput sequencing technology. SynCom inoculation significantly increased shoot height, stem diameter, fresh weight, dry weight, chlorophyll content, leaf number, root vigor, root tips, total root length, and root-specific surface area of pepper by 20.9%, 36.33%, 68.84%, 64.34%, 29.65%, 27.78%, 117.42%, 35.4%, 21.52%, and 39.76%, respectively, relative to the control. The Chao index of the rhizosphere microbial community and Bray-Curtis dissimilarity of the fungal community significantly increased, while Bray-Curtis dissimilarity of the bacterial community significantly decreased by SynCom inoculation. The abundances of key taxa such as Scedosporium, Sordariomycetes, Pseudarthrobacter, norankSBR1031, and norankA4b significantly increased with SynCom inoculation, and positively correlated with indices of pepper growth. Our findings suggest that SynCom inoculation can effectively enhance pepper growth and regulate root morphology by regulating rhizosphere microbial communities and increasing key taxa abundance like Sordariomycetes and Pseudarthrobacter, thereby benefiting nutrient acquisition, resistance improvement, and pathogen resistance of crops to ensure sustainability.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.