Surgery impairs glymphatic activity and cognitive function in aged mice.

IF 3.3 3区 医学 Q2 NEUROSCIENCES Molecular Brain Pub Date : 2025-01-24 DOI:10.1186/s13041-025-01177-y
Kai Chen, Xingyu Du, Melissa A Chao, Zhongcong Xie, Guang Yang
{"title":"Surgery impairs glymphatic activity and cognitive function in aged mice.","authors":"Kai Chen, Xingyu Du, Melissa A Chao, Zhongcong Xie, Guang Yang","doi":"10.1186/s13041-025-01177-y","DOIUrl":null,"url":null,"abstract":"<p><p>Delirium is a common complication in elderly surgical patients and is associated with an increased risk of dementia. Although advanced age is a major risk factor, the mechanisms underlying postoperative delirium remain poorly understood. The glymphatic system, a brain-wide network of perivascular pathways, facilitates cerebrospinal fluid (CSF) flow and supports the clearance of metabolic waste. Impairments in glymphatic function have been observed in aging brains and various neurodegenerative conditions. Using in vivo two-photon imaging, we examined the effects of surgery (laparotomy) on glymphatic function in adult (6 months) and aged (18 months) mice 24 h post-surgery. In adult mice, CSF tracer entry into the brain parenchyma along periarteriolar spaces occurred rapidly following intracisternal tracer injection, with no significant differences between sham and surgery groups. In contrast, aged mice exhibited delayed tracer influx, with further impairments observed in the surgery group compared to sham controls. This glymphatic dysfunction correlated with poorer T-maze performance in aged mice. These findings suggest that surgery exacerbates glymphatic impairment in aging brains, potentially hindering brain waste clearance and contributing to postoperative delirium.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"7"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01177-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Delirium is a common complication in elderly surgical patients and is associated with an increased risk of dementia. Although advanced age is a major risk factor, the mechanisms underlying postoperative delirium remain poorly understood. The glymphatic system, a brain-wide network of perivascular pathways, facilitates cerebrospinal fluid (CSF) flow and supports the clearance of metabolic waste. Impairments in glymphatic function have been observed in aging brains and various neurodegenerative conditions. Using in vivo two-photon imaging, we examined the effects of surgery (laparotomy) on glymphatic function in adult (6 months) and aged (18 months) mice 24 h post-surgery. In adult mice, CSF tracer entry into the brain parenchyma along periarteriolar spaces occurred rapidly following intracisternal tracer injection, with no significant differences between sham and surgery groups. In contrast, aged mice exhibited delayed tracer influx, with further impairments observed in the surgery group compared to sham controls. This glymphatic dysfunction correlated with poorer T-maze performance in aged mice. These findings suggest that surgery exacerbates glymphatic impairment in aging brains, potentially hindering brain waste clearance and contributing to postoperative delirium.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
期刊最新文献
Surgery impairs glymphatic activity and cognitive function in aged mice. Correction: A simple and reliable method for claustrum localization across age in mice. Sleep-driven prefrontal cortex coordinates temporal action and multimodal integration. The causal relationship between steroid hormones and risk of stroke: evidence from a two-sample Mendelian randomization study. Distribution and functional significance of KLF15 in mouse cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1