Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer.

IF 6.9 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Oncogene Pub Date : 2025-01-25 DOI:10.1038/s41388-025-03277-4
Shuai Kong, Huaguang Pan, Yuan-Wei Zhang, Fei Wang, Jian Chen, Jinxiu Dong, Chuntong Yin, Jiaqi Wu, Dan Zhou, Jingyi Peng, Junboya Ma, Jianian Zhou, Dianlong Ge, Yan Lu, Dan-Dan Wei, Jinman Fang, Wei Han, Chengyin Shen, H Phillip Koeffler, Boshi Wang, Yuan Jiang, Yan-Yi Jiang
{"title":"Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer.","authors":"Shuai Kong, Huaguang Pan, Yuan-Wei Zhang, Fei Wang, Jian Chen, Jinxiu Dong, Chuntong Yin, Jiaqi Wu, Dan Zhou, Jingyi Peng, Junboya Ma, Jianian Zhou, Dianlong Ge, Yan Lu, Dan-Dan Wei, Jinman Fang, Wei Han, Chengyin Shen, H Phillip Koeffler, Boshi Wang, Yuan Jiang, Yan-Yi Jiang","doi":"10.1038/s41388-025-03277-4","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a unique modality of regulated cell death induced by excessive lipid peroxidation, playing a crucial role in tumor suppression and providing potential therapeutic strategy for cancer treatment. Here, we find that aldehyde dehydrogenase-ALDH3A1 tightly links to ferroptosis in squamous cell carcinomas (SCCs). Functional assays demonstrate the enzymatic activity-dependent regulation of ALDH3A1 in protecting SCC cells against ferroptosis through catalyzing aldehydes and mitigating lipid peroxidation. Furthermore, a specific covalent inhibitor of ALDH3A1-EN40 significantly enhances the ferroptosis sensitivity induced by the ferroptosis inducer. The combination of EN40 and a ferroptosis inducer exhibits a synergistic effect, effectively inhibiting the proliferation of SCC cells/organoids and suppressing tumor growth both in vitro and in vivo. On mechanism, high expression of ALDH3A1 is transcriptionally governed by TP63, which binds to super-enhancer of ALDH3A1. Collectively, our findings reveal a yet-unrecognized function of ALDH3A1 exploited by SCC cells to evade ferroptosis, and targeting ALDH3A1 may enhance the effect of ferroptosis-induced therapy in SCCs.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03277-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis is a unique modality of regulated cell death induced by excessive lipid peroxidation, playing a crucial role in tumor suppression and providing potential therapeutic strategy for cancer treatment. Here, we find that aldehyde dehydrogenase-ALDH3A1 tightly links to ferroptosis in squamous cell carcinomas (SCCs). Functional assays demonstrate the enzymatic activity-dependent regulation of ALDH3A1 in protecting SCC cells against ferroptosis through catalyzing aldehydes and mitigating lipid peroxidation. Furthermore, a specific covalent inhibitor of ALDH3A1-EN40 significantly enhances the ferroptosis sensitivity induced by the ferroptosis inducer. The combination of EN40 and a ferroptosis inducer exhibits a synergistic effect, effectively inhibiting the proliferation of SCC cells/organoids and suppressing tumor growth both in vitro and in vivo. On mechanism, high expression of ALDH3A1 is transcriptionally governed by TP63, which binds to super-enhancer of ALDH3A1. Collectively, our findings reveal a yet-unrecognized function of ALDH3A1 exploited by SCC cells to evade ferroptosis, and targeting ALDH3A1 may enhance the effect of ferroptosis-induced therapy in SCCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Oncogene
Oncogene 医学-生化与分子生物学
CiteScore
15.30
自引率
1.20%
发文量
404
审稿时长
1 months
期刊介绍: Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge. Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.
期刊最新文献
Correction: Targeting the vasopressin type-2 receptor for renal cell carcinoma therapy. Correction: Loss-of-function mutations of SOX17 lead to YAP/TEAD activation-dependent malignant transformation in endometrial cancer. The protection of UCK2 protein stability by GART maintains pyrimidine salvage synthesis for HCC growth under glucose limitation. A safe haven for cancer cells: tumor plus stroma control by DYRK1B. Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1