Spatio-temporal segregation between sensory relay and swallowing pre-motor population activities by optical imaging in the rat nucleus of the solitary tract.

IF 2.9 4区 医学 Q2 PHYSIOLOGY Pflugers Archiv : European journal of physiology Pub Date : 2025-01-25 DOI:10.1007/s00424-025-03065-9
Shinya Fuse, Yoichiro Sugiyama, Rishi R Dhingra, Shigeru Hirano, Mathias Dutschmann, Yasumasa Okada, Yoshitaka Oku
{"title":"Spatio-temporal segregation between sensory relay and swallowing pre-motor population activities by optical imaging in the rat nucleus of the solitary tract.","authors":"Shinya Fuse, Yoichiro Sugiyama, Rishi R Dhingra, Shigeru Hirano, Mathias Dutschmann, Yasumasa Okada, Yoshitaka Oku","doi":"10.1007/s00424-025-03065-9","DOIUrl":null,"url":null,"abstract":"<p><p>The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation. Respiratory and swallowing motor activities were determined by simultaneous recordings of phrenic and vagal nerve activity (PNA, VNA). The analysis of SLN stimulation near the threshold triggering a swallowing allowed us to analyze Ca<sup>2+</sup> signals related to the sensory relay and the DSG. We show that activation of sensory relay neurons triggers spatially confined Ca<sup>2+</sup> signals exclusively unilateral to the stimulated SLN at short latencies (114.3 ± 94.4 ms). However, SLN-evoked swallowing triggered Ca<sup>2+</sup> signals bilaterally at longer latencies (200 ± 145.2 ms) and engaged anatomically distributed DSG activity across the dorsal medulla oblongata. The Ca<sup>2+</sup> signals originating from the DSG preceded evoked VNA swallow motor bursts, thus the swallowing premotor neurons that drive laryngeal motor pools are located outside the DSG. In conclusion, the study illuminates the spatial-temporal features of sensory-motor integration of swallowing in the NTS and further supports the hypothesis that the NTS harbors swallowing pre-motor neurons that may generate the swallowing motor activity, while first-order pre-motor pools are located outside the DSG.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-025-03065-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation. Respiratory and swallowing motor activities were determined by simultaneous recordings of phrenic and vagal nerve activity (PNA, VNA). The analysis of SLN stimulation near the threshold triggering a swallowing allowed us to analyze Ca2+ signals related to the sensory relay and the DSG. We show that activation of sensory relay neurons triggers spatially confined Ca2+ signals exclusively unilateral to the stimulated SLN at short latencies (114.3 ± 94.4 ms). However, SLN-evoked swallowing triggered Ca2+ signals bilaterally at longer latencies (200 ± 145.2 ms) and engaged anatomically distributed DSG activity across the dorsal medulla oblongata. The Ca2+ signals originating from the DSG preceded evoked VNA swallow motor bursts, thus the swallowing premotor neurons that drive laryngeal motor pools are located outside the DSG. In conclusion, the study illuminates the spatial-temporal features of sensory-motor integration of swallowing in the NTS and further supports the hypothesis that the NTS harbors swallowing pre-motor neurons that may generate the swallowing motor activity, while first-order pre-motor pools are located outside the DSG.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
2.20%
发文量
121
审稿时长
4-8 weeks
期刊介绍: Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.
期刊最新文献
The lateral habenula regulates stress-related respiratory responses via the monoaminergic system. Controlled dietary phosphate loading in healthy young men elevates plasma phosphate and FGF23 levels. Impact of the estrous cycle on brain monoamines and behavioral and respiratory responses to CO2 in mice. Effects of tDCS on glutamatergic pathways in epilepsy: neuroprotective and therapeutic potential. Hyperosmolality activates polycystin-2 and TRPM4 in renal primary cilium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1