Two- and Three-Dimensional Culture Systems: Respiratory In Vitro Tissue Models for Chemical Screening and Risk-Based Decision Making.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pharmaceuticals Pub Date : 2025-01-16 DOI:10.3390/ph18010113
Joanne Wallace, Mary C McElroy, Mitchell Klausner, Richard Corley, Seyoum Ayehunie
{"title":"Two- and Three-Dimensional Culture Systems: Respiratory In Vitro Tissue Models for Chemical Screening and Risk-Based Decision Making.","authors":"Joanne Wallace, Mary C McElroy, Mitchell Klausner, Richard Corley, Seyoum Ayehunie","doi":"10.3390/ph18010113","DOIUrl":null,"url":null,"abstract":"<p><p>Risk of lung damage from inhaled chemicals or substances has long been assessed using animal models. However, New Approach Methodologies (NAMs) that replace, reduce, and/or refine the use of animals in safety testing such as 2D and 3D cultures are increasingly being used to understand human-relevant toxicity responses and for the assessment of hazard identification. Here we review 2D and 3D lung models in terms of their application for inhalation toxicity assessment. We highlight a key case study for the Organization for Economic Cooperation and Development (OECD), in which a 3D model was used to assess human toxicity and replace the requirement for a 90-day inhalation toxicity study in rats. Finally, we consider the regulatory guidelines for the application of NAMs and potential use of different lung models for aerosol toxicity studies depending on the regulatory requirement/context of use.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768377/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18010113","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Risk of lung damage from inhaled chemicals or substances has long been assessed using animal models. However, New Approach Methodologies (NAMs) that replace, reduce, and/or refine the use of animals in safety testing such as 2D and 3D cultures are increasingly being used to understand human-relevant toxicity responses and for the assessment of hazard identification. Here we review 2D and 3D lung models in terms of their application for inhalation toxicity assessment. We highlight a key case study for the Organization for Economic Cooperation and Development (OECD), in which a 3D model was used to assess human toxicity and replace the requirement for a 90-day inhalation toxicity study in rats. Finally, we consider the regulatory guidelines for the application of NAMs and potential use of different lung models for aerosol toxicity studies depending on the regulatory requirement/context of use.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
期刊最新文献
Copper Imparts a New Therapeutic Property to Resveratrol by Generating ROS to Deactivate Cell-Free Chromatin. Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy-Challenges and Prospectives. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. p97 Inhibitors Possessing Antiviral Activity Against SARS-CoV-2 and Low Cytotoxicity. Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1