Anti-inflammatory activity of essential oil from medicinal plants: An insight into molecular mechanism, in-silico studies and signaling pathways

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL Phytomedicine Pub Date : 2025-01-02 DOI:10.1016/j.phymed.2025.156364
Lopamudra Subudhi, Hrudayanath Thatoi, Amrita Banerjee
{"title":"Anti-inflammatory activity of essential oil from medicinal plants: An insight into molecular mechanism, in-silico studies and signaling pathways","authors":"Lopamudra Subudhi,&nbsp;Hrudayanath Thatoi,&nbsp;Amrita Banerjee","doi":"10.1016/j.phymed.2025.156364","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Medicinal plants have historically been the cornerstone of treatment for a myriad of ailments. With modern pharmacology, many contemporary drugs have been derived from traditional medicine practices. Essential oils from these plants, known for their anti-inflammatory capabilities, have played a significant role in treating conditions such as cardiovascular and inflammatory skin diseases, as well as joint inflammation. This study revisits these ancient remedies to further explore their efficacy and mechanisms in the modern context.</div></div><div><h3>Focus Area</h3><div>This review focuses on identifying and analysing the primary phytochemical in medicinal plants that exhibit anti-inflammatory properties. The chemical classes of interest include alkaloids, polyphenols, terpenoids, flavonoids, saponins, and tannins, which are prevalent in the essential oils derived from therapeutic plants. By understanding their role in modulating molecular pathways, this study aims to highlight their potential in the treatment of inflammatory diseases.</div></div><div><h3>Methods</h3><div>The study employs in silico techniques such as molecular modelling and docking to examine the pharmacokinetics and toxicity profiles of selected phytochemical. This approach facilitates a deeper understanding of how these natural compounds interact at the molecular level, either as activators or inhibitors, which can influence various biochemical pathways related to inflammation.</div></div><div><h3>Results</h3><div>Preliminary findings suggest that specific phytochemical significantly modulate inflammatory pathways, offering potential therapeutic targets. The analysis reveals that these natural substances can effectively reduce inflammation without the adverse side effects commonly associated with synthetic drugs. The study provides a detailed characterization of the active components within essential oils and their respective anti-inflammatory actions.</div></div><div><h3>Conclusion</h3><div>The review underscores the immense potential for medicinal plants as a source for developing new and safer pharmaceuticals aimed at treating inflammatory conditions. By harnessing the power of natural phytochemical, there is a promising avenue for creating innovative drug therapies. This study encourages further research into the utilization of natural plant products, promoting a broader application in medicinal treatments and a return to nature-centric solutions in healthcare.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"138 ","pages":"Article 156364"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325000042","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Medicinal plants have historically been the cornerstone of treatment for a myriad of ailments. With modern pharmacology, many contemporary drugs have been derived from traditional medicine practices. Essential oils from these plants, known for their anti-inflammatory capabilities, have played a significant role in treating conditions such as cardiovascular and inflammatory skin diseases, as well as joint inflammation. This study revisits these ancient remedies to further explore their efficacy and mechanisms in the modern context.

Focus Area

This review focuses on identifying and analysing the primary phytochemical in medicinal plants that exhibit anti-inflammatory properties. The chemical classes of interest include alkaloids, polyphenols, terpenoids, flavonoids, saponins, and tannins, which are prevalent in the essential oils derived from therapeutic plants. By understanding their role in modulating molecular pathways, this study aims to highlight their potential in the treatment of inflammatory diseases.

Methods

The study employs in silico techniques such as molecular modelling and docking to examine the pharmacokinetics and toxicity profiles of selected phytochemical. This approach facilitates a deeper understanding of how these natural compounds interact at the molecular level, either as activators or inhibitors, which can influence various biochemical pathways related to inflammation.

Results

Preliminary findings suggest that specific phytochemical significantly modulate inflammatory pathways, offering potential therapeutic targets. The analysis reveals that these natural substances can effectively reduce inflammation without the adverse side effects commonly associated with synthetic drugs. The study provides a detailed characterization of the active components within essential oils and their respective anti-inflammatory actions.

Conclusion

The review underscores the immense potential for medicinal plants as a source for developing new and safer pharmaceuticals aimed at treating inflammatory conditions. By harnessing the power of natural phytochemical, there is a promising avenue for creating innovative drug therapies. This study encourages further research into the utilization of natural plant products, promoting a broader application in medicinal treatments and a return to nature-centric solutions in healthcare.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
期刊最新文献
GelMA@APPA microspheres promote chondrocyte regeneration and alleviate osteoarthritis via Fgfr2 activation. Intervention effects of Er Miao san on metabolic syndrome in Bama miniature pigs. Shenghui decoction inhibits neuronal cell apoptosis to improve Alzheimer's disease through the PDE4B/cAMP/CREB signaling pathway. Synergistic antimicrobial efficacy of glabrol and colistin through micelle-based co-delivery against multidrug-resistant bacterial pathogens. 4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1