Ruthenium(II) Complex with 1-Hydroxy-9,10-Anthraquinone Inhibits Cell Cycle Progression at G0/G1 and Induces Apoptosis in Melanoma Cells.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pharmaceuticals Pub Date : 2025-01-08 DOI:10.3390/ph18010063
Júlia S M Dias, Guilherme A Ferreira-Silva, Rommel B Viana, João H de Araujo Neto, Javier Ellena, Rodrigo S Corrêa, Marília I F Barbosa, Marisa Ionta, Antônio C Doriguetto
{"title":"Ruthenium(II) Complex with 1-Hydroxy-9,10-Anthraquinone Inhibits Cell Cycle Progression at G0/G1 and Induces Apoptosis in Melanoma Cells.","authors":"Júlia S M Dias, Guilherme A Ferreira-Silva, Rommel B Viana, João H de Araujo Neto, Javier Ellena, Rodrigo S Corrêa, Marília I F Barbosa, Marisa Ionta, Antônio C Doriguetto","doi":"10.3390/ph18010063","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.</p><p><strong>Objectives: </strong>Thus, two new ruthenium complexes with 1-hydroxy-9,10-anthraquinone were obtained: <i>trans-</i>[Ru(HQ)(PPh<sub>3</sub>)<sub>2</sub>(bipy)]PF<sub>6</sub> (<b>1</b>) and <i>cis-</i>[RuCl<sub>2</sub>(HQ)(dppb)] (<b>2</b>), where HQ = 1-hydroxy-9,10-anthraquinone, PPh<sub>3</sub> = triphenylphospine, bipy = 2,2'-bipyridine, PF<sub>6</sub> = hexafluorophosphate, and dppb = 1,4-bis(diphenylphosphine)butane.</p><p><strong>Methods: </strong>The complexes were characterized by infrared (IR), UV-vis, <sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}, and <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopies, molar conductivity, cyclic voltammetry, and elemental analysis. Furthermore, density functional theory (DFT) calculations were performed.</p><p><strong>Results: </strong>Compound (<b>2</b>) was determined by single-crystal X-ray diffraction, which confirms the bidentate coordination mode of HQ through the carbonyl and phenolate oxygens. Additionally, DNA-binding experiments yielded constants of 10<sup>5</sup> M<sup>-1</sup> (Kb = 6.93 × 10<sup>5</sup> for (<b>1</b>) and 1.60 × 10<sup>5</sup> for (<b>2</b>)) and demonstrate that both complexes can interact with DNA through intercalation, electrostatic attraction, or hydrogen bonding.</p><p><strong>Conclusions: </strong>The cytotoxicity profiles of the compounds were evaluated in human melanoma cell lines (SK-MEL-147, CHL-1, and WM1366), revealing greater cytotoxic activity for (<b>1</b>) on the CHL-1 cell line with an IC<sub>50</sub> of 14.50 ± 1.09 µM. Subsequent studies showed that (<b>1</b>) inhibits the proliferation of CHL-1 cells and induces apoptosis, associated at least in part with the pro-oxidant effect and cell cycle arrest at the G1/S transition.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18010063","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

Objectives: Thus, two new ruthenium complexes with 1-hydroxy-9,10-anthraquinone were obtained: trans-[Ru(HQ)(PPh3)2(bipy)]PF6 (1) and cis-[RuCl2(HQ)(dppb)] (2), where HQ = 1-hydroxy-9,10-anthraquinone, PPh3 = triphenylphospine, bipy = 2,2'-bipyridine, PF6 = hexafluorophosphate, and dppb = 1,4-bis(diphenylphosphine)butane.

Methods: The complexes were characterized by infrared (IR), UV-vis, 1H, 13C{1H}, and 31P{1H} NMR spectroscopies, molar conductivity, cyclic voltammetry, and elemental analysis. Furthermore, density functional theory (DFT) calculations were performed.

Results: Compound (2) was determined by single-crystal X-ray diffraction, which confirms the bidentate coordination mode of HQ through the carbonyl and phenolate oxygens. Additionally, DNA-binding experiments yielded constants of 105 M-1 (Kb = 6.93 × 105 for (1) and 1.60 × 105 for (2)) and demonstrate that both complexes can interact with DNA through intercalation, electrostatic attraction, or hydrogen bonding.

Conclusions: The cytotoxicity profiles of the compounds were evaluated in human melanoma cell lines (SK-MEL-147, CHL-1, and WM1366), revealing greater cytotoxic activity for (1) on the CHL-1 cell line with an IC50 of 14.50 ± 1.09 µM. Subsequent studies showed that (1) inhibits the proliferation of CHL-1 cells and induces apoptosis, associated at least in part with the pro-oxidant effect and cell cycle arrest at the G1/S transition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
期刊最新文献
Copper Imparts a New Therapeutic Property to Resveratrol by Generating ROS to Deactivate Cell-Free Chromatin. Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy-Challenges and Prospectives. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. p97 Inhibitors Possessing Antiviral Activity Against SARS-CoV-2 and Low Cytotoxicity. Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1