Investigating the Therapeutic Mechanisms of Total Saikosaponins in Alzheimer's Disease: A Metabolomic and Proteomic Approach.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pharmaceuticals Pub Date : 2025-01-15 DOI:10.3390/ph18010100
Huiling Wei, Tianyi Du, Weiwei Zhang, Wei Ma, Yao Yao, Juan Li
{"title":"Investigating the Therapeutic Mechanisms of Total Saikosaponins in Alzheimer's Disease: A Metabolomic and Proteomic Approach.","authors":"Huiling Wei, Tianyi Du, Weiwei Zhang, Wei Ma, Yao Yao, Juan Li","doi":"10.3390/ph18010100","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the leading cause of dementia among the elderly, yet effective treatments remain elusive. Total saikosaponins (TSS), the primary bioactive components in <i>Bupleurum chinense</i>, have shown promising therapeutic effects against AD in previous studies. <b>Methods</b>: To delve deeper into the mechanisms underlying the therapeutic role of TSS in AD, we investigated its neuroprotective effects and associated molecular mechanisms in APP/PS1 mice. Further, we employed metabolomic and proteomic analyses, with a focus on the potential protein-level changes induced by TSS, particularly those related to metabolite accumulation in the brain. <b>Results</b>: Our results showed that lysophosphatidylcholine, adenosine, and sphingomyelin in plasma might serve as potential biomarkers. Compared to the control group, AD mice exhibited significantly increased expression of proteins related to neuroinflammatory pathways, whereas proteins involved in cAMP signaling, cGMP-PKG signaling, and synaptic plasticity pathways were significantly downregulated. Notably, these signaling pathways were partially reversed in APP/PS1 mice following TSS administration. Behavioral tests demonstrated that TSS effectively improved the learning and memory functions of mice. <b>Conclusions</b>: Our findings suggest that TSS ameliorate cognitive decline through regulating neuroinflammatory pathways, cAMP and cGMP signaling, and synaptic plasticity pathways, providing insights into its therapeutic potential in AD.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18010100","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is the leading cause of dementia among the elderly, yet effective treatments remain elusive. Total saikosaponins (TSS), the primary bioactive components in Bupleurum chinense, have shown promising therapeutic effects against AD in previous studies. Methods: To delve deeper into the mechanisms underlying the therapeutic role of TSS in AD, we investigated its neuroprotective effects and associated molecular mechanisms in APP/PS1 mice. Further, we employed metabolomic and proteomic analyses, with a focus on the potential protein-level changes induced by TSS, particularly those related to metabolite accumulation in the brain. Results: Our results showed that lysophosphatidylcholine, adenosine, and sphingomyelin in plasma might serve as potential biomarkers. Compared to the control group, AD mice exhibited significantly increased expression of proteins related to neuroinflammatory pathways, whereas proteins involved in cAMP signaling, cGMP-PKG signaling, and synaptic plasticity pathways were significantly downregulated. Notably, these signaling pathways were partially reversed in APP/PS1 mice following TSS administration. Behavioral tests demonstrated that TSS effectively improved the learning and memory functions of mice. Conclusions: Our findings suggest that TSS ameliorate cognitive decline through regulating neuroinflammatory pathways, cAMP and cGMP signaling, and synaptic plasticity pathways, providing insights into its therapeutic potential in AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
期刊最新文献
Copper Imparts a New Therapeutic Property to Resveratrol by Generating ROS to Deactivate Cell-Free Chromatin. Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy-Challenges and Prospectives. Molecular Mechanisms Underlying Neuroinflammation Intervention with Medicinal Plants: A Critical and Narrative Review of the Current Literature. p97 Inhibitors Possessing Antiviral Activity Against SARS-CoV-2 and Low Cytotoxicity. Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1