Pei-Pei Liu, Xin-Yue Yu, Qing-Qing Pan, Jia-Jun Ren, Yu-Xuan Han, Kai Zhang, Yan Wang, Yin Huang, Tao Ban
{"title":"Multi-Omics and Network-Based Drug Repurposing for Septic Cardiomyopathy.","authors":"Pei-Pei Liu, Xin-Yue Yu, Qing-Qing Pan, Jia-Jun Ren, Yu-Xuan Han, Kai Zhang, Yan Wang, Yin Huang, Tao Ban","doi":"10.3390/ph18010043","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses.</p><p><strong>Methods: </strong>We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and RNA sequencing (RNA-seq). Using network proximity analysis, we screened for FDA-approved drugs that interact with SCM-associated pathways. Additionally, we tested the cardioprotective effects of two drug candidates in the SCM mouse model and explored their mechanism-of-action in H9c2 cells.</p><p><strong>Results: </strong>Network analysis identified 129 drugs associated with SCM, which were refined to 14 drug candidates based on strong network predictions, proven anti-infective effects, suitability for ICU use, and minimal side effects. Among them, acetaminophen and pyridoxal phosphate significantly improved cardiac function in SCM moues, as demonstrated by the increased ejection fraction (EF) and fractional shortening (FS), and the reduced levels of cardiac injury biomarkers: B-type natriuretic peptide (BNP) and cardiac troponin I (cTn-I). In vitro assays revealed that acetaminophen inhibited prostaglandin synthesis, reducing inflammation, while pyridoxal phosphate restored amino acid balance, supporting cellular function. These findings suggest that both drugs possess protective effects against SCM.</p><p><strong>Conclusions: </strong>This study provides a robust platform for drug repurposing in SCM, identifying acetaminophen and pyridoxal phosphate as promising candidates for clinical translation, with the potential to improve treatment outcomes in septic patients with cardiac complications.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18010043","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses.
Methods: We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and RNA sequencing (RNA-seq). Using network proximity analysis, we screened for FDA-approved drugs that interact with SCM-associated pathways. Additionally, we tested the cardioprotective effects of two drug candidates in the SCM mouse model and explored their mechanism-of-action in H9c2 cells.
Results: Network analysis identified 129 drugs associated with SCM, which were refined to 14 drug candidates based on strong network predictions, proven anti-infective effects, suitability for ICU use, and minimal side effects. Among them, acetaminophen and pyridoxal phosphate significantly improved cardiac function in SCM moues, as demonstrated by the increased ejection fraction (EF) and fractional shortening (FS), and the reduced levels of cardiac injury biomarkers: B-type natriuretic peptide (BNP) and cardiac troponin I (cTn-I). In vitro assays revealed that acetaminophen inhibited prostaglandin synthesis, reducing inflammation, while pyridoxal phosphate restored amino acid balance, supporting cellular function. These findings suggest that both drugs possess protective effects against SCM.
Conclusions: This study provides a robust platform for drug repurposing in SCM, identifying acetaminophen and pyridoxal phosphate as promising candidates for clinical translation, with the potential to improve treatment outcomes in septic patients with cardiac complications.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.