Dominance of Sulfur-Oxidizing Bacteria, Thiomicrorhabdus, in the Waters Affected by a Shallow-Sea Hydrothermal Plume.

IF 3.6 3区 生物学 Q1 BIOLOGY Biology-Basel Pub Date : 2025-01-01 DOI:10.3390/biology14010028
Chih-Ching Chung, Gwo-Ching Gong, Hsiao-Chun Tseng, Wen-Chen Chou, Chuan-Hsin Ho
{"title":"Dominance of Sulfur-Oxidizing Bacteria, <i>Thiomicrorhabdus</i>, in the Waters Affected by a Shallow-Sea Hydrothermal Plume.","authors":"Chih-Ching Chung, Gwo-Ching Gong, Hsiao-Chun Tseng, Wen-Chen Chou, Chuan-Hsin Ho","doi":"10.3390/biology14010028","DOIUrl":null,"url":null,"abstract":"<p><p>The shallow-sea hydrothermal vent at Guishan Islet, located off the coast of Taiwan, serves as a remarkable natural site for studying microbial ecology in extreme environments. In April 2019, we investigated the composition of prokaryotic picoplankton communities, their gene expression profiles, and the dissolved inorganic carbon uptake efficiency. Our results revealed that the chemolithotrophs <i>Thiomicrorhabdus</i> spp. contributed to the majority of primary production in the waters affected by the hydrothermal vent plume. The metatranscriptomic analysis aligned with the primary productivity measurements, indicating the significant gene upregulations associated with carboxysome-mediated carbon fixation in <i>Thiomicrorhabdus</i>. <i>Synechococcus</i> and <i>Prochlorococcus</i> served as the prokaryotic photoautotrophs for primary productivity in the waters with lower influence from hydrothermal vent emissions. <i>Thiomicrorhabdus</i> and picocyanobacteria jointly provided organic carbon for sustaining the shallow-sea hydrothermal vent ecosystem. In addition to the carbon fixation, the upregulation of genes involved in the SOX (sulfur-oxidizing) pathway, and the dissimilatory sulfate reduction indicated that energy generation and detoxification co-occurred in <i>Thiomicrorhabdus</i>. This study improved our understanding of the impacts of shallow-sea hydrothermal vents on the operation of marine ecosystems and biogeochemical cycles.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010028","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The shallow-sea hydrothermal vent at Guishan Islet, located off the coast of Taiwan, serves as a remarkable natural site for studying microbial ecology in extreme environments. In April 2019, we investigated the composition of prokaryotic picoplankton communities, their gene expression profiles, and the dissolved inorganic carbon uptake efficiency. Our results revealed that the chemolithotrophs Thiomicrorhabdus spp. contributed to the majority of primary production in the waters affected by the hydrothermal vent plume. The metatranscriptomic analysis aligned with the primary productivity measurements, indicating the significant gene upregulations associated with carboxysome-mediated carbon fixation in Thiomicrorhabdus. Synechococcus and Prochlorococcus served as the prokaryotic photoautotrophs for primary productivity in the waters with lower influence from hydrothermal vent emissions. Thiomicrorhabdus and picocyanobacteria jointly provided organic carbon for sustaining the shallow-sea hydrothermal vent ecosystem. In addition to the carbon fixation, the upregulation of genes involved in the SOX (sulfur-oxidizing) pathway, and the dissimilatory sulfate reduction indicated that energy generation and detoxification co-occurred in Thiomicrorhabdus. This study improved our understanding of the impacts of shallow-sea hydrothermal vents on the operation of marine ecosystems and biogeochemical cycles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Analysis on Bacterial Community of Noctiluca scintillans Algal Blooms Near Pingtan Island, China. Identifications of Common Species and Descriptions of Two New Species of Siphonaria (Mollusca: Gastropoda) in China. Puerarin Promotes the Migration and Differentiation of Myoblasts by Activating the FAK and PI3K/AKT Signaling Pathways. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. Evaluation of Different Few-Shot Learning Methods in the Plant Disease Classification Domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1