Transcriptomic Insights into Dual Temperature-Salinity Stress Response in "Shuike No. 1", a Pioneering Rainbow Trout Strain Bred in China.

IF 3.6 3区 生物学 Q1 BIOLOGY Biology-Basel Pub Date : 2025-01-10 DOI:10.3390/biology14010049
Xiaojun Liu, Gaochao Wang, Tianqing Huang, Enhui Liu, Wei Gu, Peng Fan, Kaibo Ge, Datian Li, Yunchao Sun, Gefeng Xu
{"title":"Transcriptomic Insights into Dual Temperature-Salinity Stress Response in \"Shuike No. 1\", a Pioneering Rainbow Trout Strain Bred in China.","authors":"Xiaojun Liu, Gaochao Wang, Tianqing Huang, Enhui Liu, Wei Gu, Peng Fan, Kaibo Ge, Datian Li, Yunchao Sun, Gefeng Xu","doi":"10.3390/biology14010049","DOIUrl":null,"url":null,"abstract":"<p><p>Global warming poses a significant threat to aquaculture, particularly for cold-water species like rainbow trout (<i>Oncorhynchus mykiss</i>). Understanding the molecular mechanisms underlying stress responses is crucial for developing resilient strains. This study investigates the dual stress of salinity and temperature response of \"Shuike No. 1\" (SK), a pioneering commercially bred rainbow trout strain in China, using RNA-sequencing of gill, intestine, and liver tissues from fish exposed to four treatment combinations: freshwater at 16 °C, freshwater at 25 °C, saltwater (30‱) at 16 °C, and saltwater at 25 °C. Differential gene expression analysis identified a substantial number of DEGs, with the liver showing the most pronounced response and a clear synergistic effect observed under combined high-temperature and salinity stress. Weighted gene co-expression network analysis (WGCNA) revealed stress-responsive gene modules and identified hub genes, primarily associated with gene expression, endoplasmic reticulum (ER) function, disease immunity, energy metabolism, and substance transport. Key hub genes included <i>klf9</i>, <i>fkbp5a</i>, <i>fkbp5b</i>, <i>ef2</i>, <i>cirbp</i>, <i>atp1b1</i>, <i>atp1b2</i>, <i>foxi3b</i>, <i>smoc1</i>, and <i>arf1</i>. Functional enrichment analysis confirmed the prominent role of ER stress, particularly the pathway \"protein processing in the endoplasmic reticulum.\" Our results reveal complex, tissue-specific responses to dual stress, with high temperature exerting a stronger influence than salinity. These findings provide valuable insights into the molecular mechanisms underpinning dual stress responses in SK, informing future breeding programs for enhanced resilience in the face of climate change.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010049","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Global warming poses a significant threat to aquaculture, particularly for cold-water species like rainbow trout (Oncorhynchus mykiss). Understanding the molecular mechanisms underlying stress responses is crucial for developing resilient strains. This study investigates the dual stress of salinity and temperature response of "Shuike No. 1" (SK), a pioneering commercially bred rainbow trout strain in China, using RNA-sequencing of gill, intestine, and liver tissues from fish exposed to four treatment combinations: freshwater at 16 °C, freshwater at 25 °C, saltwater (30‱) at 16 °C, and saltwater at 25 °C. Differential gene expression analysis identified a substantial number of DEGs, with the liver showing the most pronounced response and a clear synergistic effect observed under combined high-temperature and salinity stress. Weighted gene co-expression network analysis (WGCNA) revealed stress-responsive gene modules and identified hub genes, primarily associated with gene expression, endoplasmic reticulum (ER) function, disease immunity, energy metabolism, and substance transport. Key hub genes included klf9, fkbp5a, fkbp5b, ef2, cirbp, atp1b1, atp1b2, foxi3b, smoc1, and arf1. Functional enrichment analysis confirmed the prominent role of ER stress, particularly the pathway "protein processing in the endoplasmic reticulum." Our results reveal complex, tissue-specific responses to dual stress, with high temperature exerting a stronger influence than salinity. These findings provide valuable insights into the molecular mechanisms underpinning dual stress responses in SK, informing future breeding programs for enhanced resilience in the face of climate change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
The Role of tRNA-Derived Small RNAs (tsRNAs) in Regulating Cell Death of Cardiovascular Diseases. Effect of Fertilization on the Performance of Adult Pinus pinea Trees. Long-Term Engraftment of Cryopreserved Human Neurons for In Vivo Disease Modeling in Neurodegenerative Disease. CNPY2 in Solid Tumors: Mechanisms, Biomarker Potential, and Therapeutic Implications. Characterization of Exosome-like Nanoparticles from Saffron Tepals and Their Immunostimulatory Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1