Automated adjustment of metabolic niches enables the control of natural and engineered microbial co-cultures.

IF 14.3 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Trends in biotechnology Pub Date : 2025-01-23 DOI:10.1016/j.tibtech.2024.12.005
Juan Andres Martinez, Romain Bouchat, Tiphaine Gallet de Saint Aurin, Luz María Martínez, Luis Caspeta, Samuel Telek, Andrew Zicler, Guillermo Gosset, Frank Delvigne
{"title":"Automated adjustment of metabolic niches enables the control of natural and engineered microbial co-cultures.","authors":"Juan Andres Martinez, Romain Bouchat, Tiphaine Gallet de Saint Aurin, Luz María Martínez, Luis Caspeta, Samuel Telek, Andrew Zicler, Guillermo Gosset, Frank Delvigne","doi":"10.1016/j.tibtech.2024.12.005","DOIUrl":null,"url":null,"abstract":"<p><p>Much attention has focused on understanding microbial interactions leading to stable co-cultures. In this work, substrate pulsing was performed to promote better control of the metabolic niches (MNs) corresponding to each species, leading to the continuous co-cultivation of diverse microbial organisms. We used a cell-machine interface, which allows adjustment of the temporal profile of two MNs according to a rhythm, ensuring the successive growth of two species, in our case, a yeast and a bacterium. The resulting approach, called 'automated adjustment of metabolic niches' (AAMN), was effective for stabilizing both cooperative and competitive co-cultures. AAMN can be considered an enabling technology for the deployment of co-cultures in bioprocesses, demonstrated here based on the continuous bioproduction of p-coumaric acid. The data accumulated suggest that AAMN could be used not only for a wider range of biological systems, but also to gain fundamental insights into microbial interaction mechanisms.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.12.005","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Much attention has focused on understanding microbial interactions leading to stable co-cultures. In this work, substrate pulsing was performed to promote better control of the metabolic niches (MNs) corresponding to each species, leading to the continuous co-cultivation of diverse microbial organisms. We used a cell-machine interface, which allows adjustment of the temporal profile of two MNs according to a rhythm, ensuring the successive growth of two species, in our case, a yeast and a bacterium. The resulting approach, called 'automated adjustment of metabolic niches' (AAMN), was effective for stabilizing both cooperative and competitive co-cultures. AAMN can be considered an enabling technology for the deployment of co-cultures in bioprocesses, demonstrated here based on the continuous bioproduction of p-coumaric acid. The data accumulated suggest that AAMN could be used not only for a wider range of biological systems, but also to gain fundamental insights into microbial interaction mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
期刊最新文献
Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care. Automated adjustment of metabolic niches enables the control of natural and engineered microbial co-cultures. Distillation for in situ recovery of volatile fermentation products. Understanding bacterial ecology to combat antibiotic resistance dissemination. High-throughput screening strategies for plastic-depolymerizing enzymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1