Adrie J J Straathof, Tamara Janković, Anton A Kiss
{"title":"Distillation for in situ recovery of volatile fermentation products.","authors":"Adrie J J Straathof, Tamara Janković, Anton A Kiss","doi":"10.1016/j.tibtech.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>Many fermentation products inhibit their own microbial production, which complicates industrial-scale fermentation development for these products. When a product is volatile, this inhibition can be circumvented by removing product during fermentation through evaporation in a loop around the bioreactor. Microbes can survive this loop if its temperature is reduced using vacuum. Then, regrowing of microbes is not required. From a separation efficiency viewpoint, the evaporation loop should not use a single equilibrium stage, but a multistage vacuum distillation column. Such in situ product removal (ISPR) by vacuum distillation has hardly been recognized as an option, however. Costs for this product removal with subsequent purification are modest, even when product titers are low. A prerequisite is the use of advanced energy integration and heat pumping methods.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.12.009","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many fermentation products inhibit their own microbial production, which complicates industrial-scale fermentation development for these products. When a product is volatile, this inhibition can be circumvented by removing product during fermentation through evaporation in a loop around the bioreactor. Microbes can survive this loop if its temperature is reduced using vacuum. Then, regrowing of microbes is not required. From a separation efficiency viewpoint, the evaporation loop should not use a single equilibrium stage, but a multistage vacuum distillation column. Such in situ product removal (ISPR) by vacuum distillation has hardly been recognized as an option, however. Costs for this product removal with subsequent purification are modest, even when product titers are low. A prerequisite is the use of advanced energy integration and heat pumping methods.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).