Michał Arciszewski, Magdalena Pogorzelec, Marzena Parzymies, Urszula Bronowicka-Mielniczuk, Tomasz Mieczan
{"title":"Do Endangered Glacial Relicts Have a Chance for Effective Conservation in the Age of Global Warming? A Case Study: <i>Salix lapponum</i> in Eastern Poland.","authors":"Michał Arciszewski, Magdalena Pogorzelec, Marzena Parzymies, Urszula Bronowicka-Mielniczuk, Tomasz Mieczan","doi":"10.3390/biology14010019","DOIUrl":null,"url":null,"abstract":"<p><p>The abiotic stresses to which plants are exposed, especially in times of climate change, can result in the disruption of natural plant physiological processes. Sudden atmospheric phenomena may increase the risk of failure in protecting rare and extinction-threatened plant species by translocation. This study aimed to determine the effect of extreme ambient temperatures on the condition and physiological response of <i>Salix lapponum</i> plantlets used for their reintroduction into the natural habitat. <i>Salix lapponum</i> plants obtained by micropropagation methods at different stages of growth under laboratory conditions were subjected to a biological experiment. Plants were exposed for 12 h to temperature extremes (0 °C and 30 °C), after which the values of selected markers of the biochemical response were determined, such as photosynthetic pigments and anthocyanin content, guaiacol peroxidase and catalase activity, the presence of ROS and the RWC value. The study showed that plants at early growth stages were sensitive to low-temperature stress. In contrast, older ones showed a stronger response to high temperature, marked by an increased anthocyanin content and guaiacol peroxidase activity. It was also found that a short exposure to temperature extremes did not change the photosynthetic pigment content or catalase activity. The results of the study may be an important indication for the optimization of plant acclimatization methods in the process of their active protection by species translocation.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The abiotic stresses to which plants are exposed, especially in times of climate change, can result in the disruption of natural plant physiological processes. Sudden atmospheric phenomena may increase the risk of failure in protecting rare and extinction-threatened plant species by translocation. This study aimed to determine the effect of extreme ambient temperatures on the condition and physiological response of Salix lapponum plantlets used for their reintroduction into the natural habitat. Salix lapponum plants obtained by micropropagation methods at different stages of growth under laboratory conditions were subjected to a biological experiment. Plants were exposed for 12 h to temperature extremes (0 °C and 30 °C), after which the values of selected markers of the biochemical response were determined, such as photosynthetic pigments and anthocyanin content, guaiacol peroxidase and catalase activity, the presence of ROS and the RWC value. The study showed that plants at early growth stages were sensitive to low-temperature stress. In contrast, older ones showed a stronger response to high temperature, marked by an increased anthocyanin content and guaiacol peroxidase activity. It was also found that a short exposure to temperature extremes did not change the photosynthetic pigment content or catalase activity. The results of the study may be an important indication for the optimization of plant acclimatization methods in the process of their active protection by species translocation.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.