{"title":"Populations of the Invasive Mussel <i>Mytella strigata</i> in China Showed Lower Genetic Diversity in Autumn than in Spring.","authors":"Peizhen Ma, Chenxia Zuo, Shaojing Yan, Xiangyu Wu, Xiaojie Ma, Yi Zhu, Zhen Zhang","doi":"10.3390/biology14010016","DOIUrl":null,"url":null,"abstract":"<p><p>Native to tropical America, the charru mussel, <i>Mytella strigata</i>, has been spreading rapidly in the West Pacific Ocean, including the South China Sea. In order to study the adaptive evolution of <i>M. strigata</i> and examine the present status of invasion in China, the mitochondrial <i>nad2</i> gene fragment was employed to analyze the genetic variations of seven populations sampled in both spring and autumn 2023. Results showed that all the populations had high haplotype diversity (>0.5) and low nucleotide diversity (<0.005), suggesting the ongoing rapid expansion following a genetic bottleneck. The Zhanjiang population had the highest genetic diversity in spring with 22 haplotypes, 37 polymorphic sites, and haplotype diversity, nucleotide diversity, and the average number of nucleotide differences being 0.911, 0.00623, and 4.341, respectively. However, in autumn, the Shanwei population had the most haplotypes (11) and polymorphic sites (19), with the highest haplotype diversity value of 0.891, while the Qunjian population had the highest nucleotide diversity (0.00392) and average number of nucleotide differences (2.809). Combining geographic populations by seasons confirmed lower genetic diversity in autumn compared to spring, evidenced by fewer haplotypes and polymorphic sites, reduced haplotype diversity and nucleotide diversity, and lower genetic distance within populations. These findings provided evidence for understanding the molecular characteristics of <i>M. strigata</i> population expansion in China.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010016","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Native to tropical America, the charru mussel, Mytella strigata, has been spreading rapidly in the West Pacific Ocean, including the South China Sea. In order to study the adaptive evolution of M. strigata and examine the present status of invasion in China, the mitochondrial nad2 gene fragment was employed to analyze the genetic variations of seven populations sampled in both spring and autumn 2023. Results showed that all the populations had high haplotype diversity (>0.5) and low nucleotide diversity (<0.005), suggesting the ongoing rapid expansion following a genetic bottleneck. The Zhanjiang population had the highest genetic diversity in spring with 22 haplotypes, 37 polymorphic sites, and haplotype diversity, nucleotide diversity, and the average number of nucleotide differences being 0.911, 0.00623, and 4.341, respectively. However, in autumn, the Shanwei population had the most haplotypes (11) and polymorphic sites (19), with the highest haplotype diversity value of 0.891, while the Qunjian population had the highest nucleotide diversity (0.00392) and average number of nucleotide differences (2.809). Combining geographic populations by seasons confirmed lower genetic diversity in autumn compared to spring, evidenced by fewer haplotypes and polymorphic sites, reduced haplotype diversity and nucleotide diversity, and lower genetic distance within populations. These findings provided evidence for understanding the molecular characteristics of M. strigata population expansion in China.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.