Agustín Cartes, Caroll Stoore, María Soledad Baquedano, Christian Hidalgo, Felipe Lillo, Eduardo Landerer, Galia Ramírez-Toloza, Rodolfo Paredes
{"title":"An Exploration of the Cellular Microenvironment of the Female Pig Urethra: Translational Insights for Urological Research.","authors":"Agustín Cartes, Caroll Stoore, María Soledad Baquedano, Christian Hidalgo, Felipe Lillo, Eduardo Landerer, Galia Ramírez-Toloza, Rodolfo Paredes","doi":"10.3390/biology14010031","DOIUrl":null,"url":null,"abstract":"<p><p>Urinary incontinence is a widespread issue, particularly among women, with effective treatments remaining elusive. The pig, and especially the female pig, stands as a promising animal model for the study of this condition, due to its anatomical similarities to humans. The aim of this study was to explore the largely uncharted muscular structure of the female pig urethra, linking urethral muscle dysfunction to incontinence. We examined histological sections from the urethras of six sows using Hematoxylin-Eosin and Masson's trichrome staining for morphometric analysis. The statistical significance of cellular disposition was determined through analysis of variance (ANOVA), followed by a Tukey post hoc test to elucidate specific inter-group differences. Our analysis revealed segment-specific epithelial differences, including variations in cell layers, sparse acinar glands, rich vasculature, and distinct muscle fibers with diverse regional distributions. Notably, significant differences in muscular area and tissue distribution were identified between the proximal, middle, and distal segments of the urethra (<i>p</i> < 0.001). The observed anatomical variations, along with the cellular similarities between pigs and humans, establish the female pig as a crucial translational model for advancing urological research. Specifically, these findings provide a foundation for the development of innovative therapeutic strategies and surgical techniques that can be directly applied to improve outcomes in human urological conditions.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010031","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Urinary incontinence is a widespread issue, particularly among women, with effective treatments remaining elusive. The pig, and especially the female pig, stands as a promising animal model for the study of this condition, due to its anatomical similarities to humans. The aim of this study was to explore the largely uncharted muscular structure of the female pig urethra, linking urethral muscle dysfunction to incontinence. We examined histological sections from the urethras of six sows using Hematoxylin-Eosin and Masson's trichrome staining for morphometric analysis. The statistical significance of cellular disposition was determined through analysis of variance (ANOVA), followed by a Tukey post hoc test to elucidate specific inter-group differences. Our analysis revealed segment-specific epithelial differences, including variations in cell layers, sparse acinar glands, rich vasculature, and distinct muscle fibers with diverse regional distributions. Notably, significant differences in muscular area and tissue distribution were identified between the proximal, middle, and distal segments of the urethra (p < 0.001). The observed anatomical variations, along with the cellular similarities between pigs and humans, establish the female pig as a crucial translational model for advancing urological research. Specifically, these findings provide a foundation for the development of innovative therapeutic strategies and surgical techniques that can be directly applied to improve outcomes in human urological conditions.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.