Molecular Mechanisms Underlying Substance Transport, Signal Transduction, and Anti-Stress Regulation, as Well as Anti-Alkaline Regulation via Bursicon in the Cerebral Ganglion of Chinese Mitten Crab Eriocheir sinensis Under Alkaline Stress.

IF 3.6 3区 生物学 Q1 BIOLOGY Biology-Basel Pub Date : 2025-01-16 DOI:10.3390/biology14010084
Meiyao Wang, Jun Zhou, Jiachun Ge, Gangchun Xu, Yongkai Tang
{"title":"Molecular Mechanisms Underlying Substance Transport, Signal Transduction, and Anti-Stress Regulation, as Well as Anti-Alkaline Regulation via <i>Bursicon</i> in the Cerebral Ganglion of Chinese Mitten Crab <i>Eriocheir sinensis</i> Under Alkaline Stress.","authors":"Meiyao Wang, Jun Zhou, Jiachun Ge, Gangchun Xu, Yongkai Tang","doi":"10.3390/biology14010084","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: Global climate change is intensifying, and the vigorous development and utilization of saline-alkali land is of great significance. As an important economic aquatic species in the context of saline-alkali aquaculture, it is highly significant to explore the regulatory mechanisms of <i>Eriocheir sinensis</i> under alkaline conditions. In particular, the brain (cerebral ganglion for crustaceans) serves as a vital regulatory organ in response to environmental stress; (2) Methods: In this study, a comparative transcriptome approach was employed to investigate the key regulatory genes and molecular regulatory mechanisms in the cerebral ganglion of <i>E. sinensis</i> under alkaline stress. (3) Results: The results demonstrated that the cerebral ganglion of <i>E. sinensis</i> exhibited a positive response to acute alkaline stress. Pathways associated with signal transduction and substance transportation, such as \"phagosome\" and \"regulation of actin cytoskeleton\", along with regulatory genes involved in antioxidation, were upregulated synergistically to maintain homeostasis under alkaline stress. Furthermore, it was discovered for the first time that <i>bursicon</i> plays a positive regulatory role in the adaptation of <i>E. sinensis</i> to alkalinity. (4) Conclusions: The present study elucidates the molecular regulatory pattern of the cerebral ganglion in <i>E. sinensis</i> under acute alkaline stress as well as revealing a novel role of <i>bursicon</i> in facilitating adaptation to alkalinity in <i>E. sinensis</i>, providing valuable theoretical insights into the molecular regulatory mechanisms underlying the responses of cerebral ganglia to saline-alkali environments. These findings also offer a theoretical reference for promoting the sustainable development of the <i>E. sinensis</i> breeding industry under saline-alkali conditions.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

(1) Background: Global climate change is intensifying, and the vigorous development and utilization of saline-alkali land is of great significance. As an important economic aquatic species in the context of saline-alkali aquaculture, it is highly significant to explore the regulatory mechanisms of Eriocheir sinensis under alkaline conditions. In particular, the brain (cerebral ganglion for crustaceans) serves as a vital regulatory organ in response to environmental stress; (2) Methods: In this study, a comparative transcriptome approach was employed to investigate the key regulatory genes and molecular regulatory mechanisms in the cerebral ganglion of E. sinensis under alkaline stress. (3) Results: The results demonstrated that the cerebral ganglion of E. sinensis exhibited a positive response to acute alkaline stress. Pathways associated with signal transduction and substance transportation, such as "phagosome" and "regulation of actin cytoskeleton", along with regulatory genes involved in antioxidation, were upregulated synergistically to maintain homeostasis under alkaline stress. Furthermore, it was discovered for the first time that bursicon plays a positive regulatory role in the adaptation of E. sinensis to alkalinity. (4) Conclusions: The present study elucidates the molecular regulatory pattern of the cerebral ganglion in E. sinensis under acute alkaline stress as well as revealing a novel role of bursicon in facilitating adaptation to alkalinity in E. sinensis, providing valuable theoretical insights into the molecular regulatory mechanisms underlying the responses of cerebral ganglia to saline-alkali environments. These findings also offer a theoretical reference for promoting the sustainable development of the E. sinensis breeding industry under saline-alkali conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Analysis on Bacterial Community of Noctiluca scintillans Algal Blooms Near Pingtan Island, China. Identifications of Common Species and Descriptions of Two New Species of Siphonaria (Mollusca: Gastropoda) in China. Puerarin Promotes the Migration and Differentiation of Myoblasts by Activating the FAK and PI3K/AKT Signaling Pathways. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. Evaluation of Different Few-Shot Learning Methods in the Plant Disease Classification Domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1