Xiaoyu Liang, Huanqi Wu, Yuyu Ma, Changzeng Liu, Xiaolin Ning
{"title":"Parameterization of the Differences in Neural Oscillations Recorded by Wearable Magnetoencephalography for Chinese Semantic Cognition.","authors":"Xiaoyu Liang, Huanqi Wu, Yuyu Ma, Changzeng Liu, Xiaolin Ning","doi":"10.3390/biology14010091","DOIUrl":null,"url":null,"abstract":"<p><p>Neural oscillations observed during semantic processing embody the function of brain language processing. Precise parameterization of the differences in these oscillations across various semantics from a time-frequency perspective is pivotal for elucidating the mechanisms of brain language processing. The superlet transform and cluster depth test were used to compute the time-frequency representation of oscillatory difference (ODTFR) between neural activities recorded by optically pumped magnetometer-based magnetoencephalography (OPM-MEG) during processing congruent and incongruent Chinese semantics. Subsequently, ODTFR was parameterized based on the definition of local events. Finally, this study calculated the specific time-frequency values at which oscillation differences occurred in multiple auditory-language-processing regions. It was found that these oscillatory differences appeared in most regions and were mainly concentrated in the beta band. The average peak frequency of these oscillatory differences was 15.7 Hz, and the average peak time was 457 ms. These findings offer a fresh perspective on the neural mechanisms underlying the processing of distinct Chinese semantics and provide references and insights for analyzing language-related brain activities recorded by OPM-MEG.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010091","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neural oscillations observed during semantic processing embody the function of brain language processing. Precise parameterization of the differences in these oscillations across various semantics from a time-frequency perspective is pivotal for elucidating the mechanisms of brain language processing. The superlet transform and cluster depth test were used to compute the time-frequency representation of oscillatory difference (ODTFR) between neural activities recorded by optically pumped magnetometer-based magnetoencephalography (OPM-MEG) during processing congruent and incongruent Chinese semantics. Subsequently, ODTFR was parameterized based on the definition of local events. Finally, this study calculated the specific time-frequency values at which oscillation differences occurred in multiple auditory-language-processing regions. It was found that these oscillatory differences appeared in most regions and were mainly concentrated in the beta band. The average peak frequency of these oscillatory differences was 15.7 Hz, and the average peak time was 457 ms. These findings offer a fresh perspective on the neural mechanisms underlying the processing of distinct Chinese semantics and provide references and insights for analyzing language-related brain activities recorded by OPM-MEG.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.