DGMSCL: A dynamic graph mixed supervised contrastive learning approach for class imbalanced multivariate time series classification

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-01-17 DOI:10.1016/j.neunet.2025.107131
Lipeng Qian , Qiong Zuo , Dahu Li , Hong Zhu
{"title":"DGMSCL: A dynamic graph mixed supervised contrastive learning approach for class imbalanced multivariate time series classification","authors":"Lipeng Qian ,&nbsp;Qiong Zuo ,&nbsp;Dahu Li ,&nbsp;Hong Zhu","doi":"10.1016/j.neunet.2025.107131","DOIUrl":null,"url":null,"abstract":"<div><div>In the Imbalanced Multivariate Time Series Classification (ImMTSC) task, minority-class instances typically correspond to critical events, such as system faults in power grids or abnormal health occurrences in medical monitoring. Despite being rare and random, these events are highly significant. The dynamic spatial–temporal relationships between minority-class instances and other instances make them more prone to interference from neighboring instances during classification. Increasing the number of minority-class samples during training often results in overfitting to a single pattern of the minority class. Contrastive learning ensures that majority-class instances learn similar features in the representation space. However, it does not effectively aggregate features from neighboring minority-class instances, hindering its ability to properly represent these instances in the ImMTS dataset.</div><div>Therefor, we propose a dynamic graph-based mixed supervised contrastive learning method (DGMSCL) that effectively fits minority-class features without increasing their number, while also separating them from other instances in the representation space. First, it reconstructs the input sequence into dynamic graphs and employs a hierarchical attention graph neural network (HAGNN) to generate a discriminative embedding representation between instances. Based on this, we introduce a novel mixed contrast loss, which includes weight-augmented inter-graph supervised contrast (WAIGC) and context-based minority class-aware contrast (MCAC). It adjusts the sample weights based on their quantity and intrinsic characteristics, placing greater emphasis on minority-class loss to produce more effective gradient gains during training. Additionally, it separates minority-class instances from adjacent transitional instances in the representation space, enhancing their representational capacity.</div><div>Extensive experiments across various scenarios and datasets with differing degrees of imbalance demonstrate that DGMSCL consistently outperforms existing baseline models. Specifically, DGMSCL achieves higher overall classification accuracy, as evidenced by significantly improved average F1-score, G-mean, and kappa coefficient across multiple datasets. Moreover, classification results on a real-world power data show that DGMSCL generalizes well to real-world application.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107131"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025000103","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the Imbalanced Multivariate Time Series Classification (ImMTSC) task, minority-class instances typically correspond to critical events, such as system faults in power grids or abnormal health occurrences in medical monitoring. Despite being rare and random, these events are highly significant. The dynamic spatial–temporal relationships between minority-class instances and other instances make them more prone to interference from neighboring instances during classification. Increasing the number of minority-class samples during training often results in overfitting to a single pattern of the minority class. Contrastive learning ensures that majority-class instances learn similar features in the representation space. However, it does not effectively aggregate features from neighboring minority-class instances, hindering its ability to properly represent these instances in the ImMTS dataset.
Therefor, we propose a dynamic graph-based mixed supervised contrastive learning method (DGMSCL) that effectively fits minority-class features without increasing their number, while also separating them from other instances in the representation space. First, it reconstructs the input sequence into dynamic graphs and employs a hierarchical attention graph neural network (HAGNN) to generate a discriminative embedding representation between instances. Based on this, we introduce a novel mixed contrast loss, which includes weight-augmented inter-graph supervised contrast (WAIGC) and context-based minority class-aware contrast (MCAC). It adjusts the sample weights based on their quantity and intrinsic characteristics, placing greater emphasis on minority-class loss to produce more effective gradient gains during training. Additionally, it separates minority-class instances from adjacent transitional instances in the representation space, enhancing their representational capacity.
Extensive experiments across various scenarios and datasets with differing degrees of imbalance demonstrate that DGMSCL consistently outperforms existing baseline models. Specifically, DGMSCL achieves higher overall classification accuracy, as evidenced by significantly improved average F1-score, G-mean, and kappa coefficient across multiple datasets. Moreover, classification results on a real-world power data show that DGMSCL generalizes well to real-world application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Identity Model Transformation for boosting performance and efficiency in object detection network. Enhancing Recommender Systems through Imputation and Social-Aware Graph Convolutional Neural Network. Multi-level feature fusion networks for smoke recognition in remote sensing imagery. Synergistic learning with multi-task DeepONet for efficient PDE problem solving. ICH-PRNet: a cross-modal intracerebral haemorrhage prognostic prediction method using joint-attention interaction mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1