Adewunmi Akingbola, Abiodun Adegbesan, Samuel TundeAlao, Olajumoke Adewole, Comfort Ayikoru, Akpevwe Emmanuella Benson, Mayowa Shekoni, Joel Chuku
{"title":"Human Metapneumovirus: an emerging respiratory pathogen and the urgent need for improved Diagnostics, surveillance, and vaccine development.","authors":"Adewunmi Akingbola, Abiodun Adegbesan, Samuel TundeAlao, Olajumoke Adewole, Comfort Ayikoru, Akpevwe Emmanuella Benson, Mayowa Shekoni, Joel Chuku","doi":"10.1080/23744235.2025.2453824","DOIUrl":null,"url":null,"abstract":"<p><p>Human Metapneumovirus (HMPV) is a re-emerging respiratory pathogen causing significant morbidity and mortality, particularly among young children, the elderly, and immunocompromised individuals. First identified in 2001, HMPV has since been recognised as a leading cause of acute respiratory tract infections (ARTIs) worldwide. Its transmission occurs through droplets, direct contact, and surface contamination, with crowded spaces and healthcare facilities serving as key environmental amplifiers. HMPV's clinical manifestations, ranging from mild cold-like symptoms to severe pneumonia, often overlap with those of other respiratory pathogens like RSV and COVID-19, complicating timely diagnosis and management. Despite advancements in molecular diagnostics, the limited accessibility of these tools in low-resource settings presents a challenge. Preventive measures, such as hygiene practices and physical distancing, remain critical, as no approved vaccines or targeted antiviral therapies are currently available. However, promising innovations, including AI-guided vaccine design and portable diagnostic tools, highlight the potential for future breakthroughs. This article highlights the urgent need for enhanced surveillance, scalable diagnostics, and intensified research into vaccines and therapeutic strategies. By addressing these gaps, HMPV's global burden can be significantly mitigated, improving outcomes for high-risk populations, and strengthening preparedness against respiratory virus outbreaks.</p>","PeriodicalId":73372,"journal":{"name":"Infectious diseases (London, England)","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious diseases (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23744235.2025.2453824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Human Metapneumovirus (HMPV) is a re-emerging respiratory pathogen causing significant morbidity and mortality, particularly among young children, the elderly, and immunocompromised individuals. First identified in 2001, HMPV has since been recognised as a leading cause of acute respiratory tract infections (ARTIs) worldwide. Its transmission occurs through droplets, direct contact, and surface contamination, with crowded spaces and healthcare facilities serving as key environmental amplifiers. HMPV's clinical manifestations, ranging from mild cold-like symptoms to severe pneumonia, often overlap with those of other respiratory pathogens like RSV and COVID-19, complicating timely diagnosis and management. Despite advancements in molecular diagnostics, the limited accessibility of these tools in low-resource settings presents a challenge. Preventive measures, such as hygiene practices and physical distancing, remain critical, as no approved vaccines or targeted antiviral therapies are currently available. However, promising innovations, including AI-guided vaccine design and portable diagnostic tools, highlight the potential for future breakthroughs. This article highlights the urgent need for enhanced surveillance, scalable diagnostics, and intensified research into vaccines and therapeutic strategies. By addressing these gaps, HMPV's global burden can be significantly mitigated, improving outcomes for high-risk populations, and strengthening preparedness against respiratory virus outbreaks.