Developmental Proteomics Reveals the Dynamic Expression Profile of Global Proteins of Haemaphysalis longicornis (Parthenogenesis).

IF 3.2 3区 生物学 Q1 BIOLOGY Life-Basel Pub Date : 2025-01-06 DOI:10.3390/life15010059
Min-Xuan Liu, Xiao-Pei Xu, Fan-Ming Meng, Bing Zhang, Wei-Gang Li, Yuan-Yuan Zhang, Qiao-Ying Zen, Wen-Ge Liu
{"title":"Developmental Proteomics Reveals the Dynamic Expression Profile of Global Proteins of <i>Haemaphysalis longicornis</i> (Parthenogenesis).","authors":"Min-Xuan Liu, Xiao-Pei Xu, Fan-Ming Meng, Bing Zhang, Wei-Gang Li, Yuan-Yuan Zhang, Qiao-Ying Zen, Wen-Ge Liu","doi":"10.3390/life15010059","DOIUrl":null,"url":null,"abstract":"<p><p><i>H. longicornis</i> is used as an experimental animal model for the study of three-host ticks due to its special life cycle and easy maintenance in the laboratory and in its reproduction. The life cycle of <i>H. longicornis</i> goes through a tightly regulated life cycle to adapt to the changing host and environment, and these stages of transition are also accompanied by proteome changes in the body. Here, we used the isobaric tags for a relative and absolute quantification (iTRAQ) technique to systematically describe and analyze the dynamic expression of the protein and the molecular basis of the proteome of <i>H. longicornis</i> in seven differential developmental stages (eggs, unfed larvae, engorged larvae, unfed nymphs, engorged nymphs unfed adults, and engorged adults). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the differentially expressed proteins (DEPs) were used. In our study, A total of 2044 proteins were identified, and their expression profiles were classified at different developmental stages. In addition, it was found that tissue and organ development-related proteins and metabolism-related proteins were involved in different physiological processes throughout the life cycle through the GO and KEGG analysis of DEPs. More importantly, we found that the up-regulated proteins of engorged adult ticks were mainly related to yolk absorption, degradation, and ovarian development-related proteins. The abundance of the cuticle proteins in the unfed stages was significantly higher compared with those of the engorged ticks in the previous stages. We believe that our study has made a significant contribution to the research on <i>H. longicornis</i>, which is an important vector of SFTSV. In this study, we identified changes in the proteome throughout the <i>H. longicornis</i> development, and functional analysis highlighted the important roles of many key proteins in developmental events (ovarian development, the molting process, the development of midgut, the development and degeneration of salivary glands, etc.). The revelation of this data will provide a reference proteome for future research on tick functional proteins and candidate targets for elucidating <i>H. longicornis</i> development and developing new tick control strategies.</p>","PeriodicalId":56144,"journal":{"name":"Life-Basel","volume":"15 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/life15010059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

H. longicornis is used as an experimental animal model for the study of three-host ticks due to its special life cycle and easy maintenance in the laboratory and in its reproduction. The life cycle of H. longicornis goes through a tightly regulated life cycle to adapt to the changing host and environment, and these stages of transition are also accompanied by proteome changes in the body. Here, we used the isobaric tags for a relative and absolute quantification (iTRAQ) technique to systematically describe and analyze the dynamic expression of the protein and the molecular basis of the proteome of H. longicornis in seven differential developmental stages (eggs, unfed larvae, engorged larvae, unfed nymphs, engorged nymphs unfed adults, and engorged adults). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the differentially expressed proteins (DEPs) were used. In our study, A total of 2044 proteins were identified, and their expression profiles were classified at different developmental stages. In addition, it was found that tissue and organ development-related proteins and metabolism-related proteins were involved in different physiological processes throughout the life cycle through the GO and KEGG analysis of DEPs. More importantly, we found that the up-regulated proteins of engorged adult ticks were mainly related to yolk absorption, degradation, and ovarian development-related proteins. The abundance of the cuticle proteins in the unfed stages was significantly higher compared with those of the engorged ticks in the previous stages. We believe that our study has made a significant contribution to the research on H. longicornis, which is an important vector of SFTSV. In this study, we identified changes in the proteome throughout the H. longicornis development, and functional analysis highlighted the important roles of many key proteins in developmental events (ovarian development, the molting process, the development of midgut, the development and degeneration of salivary glands, etc.). The revelation of this data will provide a reference proteome for future research on tick functional proteins and candidate targets for elucidating H. longicornis development and developing new tick control strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Life-Basel
Life-Basel Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
4.30
自引率
6.20%
发文量
1798
审稿时长
11 weeks
期刊介绍: Life (ISSN 2075-1729) is an international, peer-reviewed open access journal of scientific studies related to fundamental themes in Life Sciences, especially those concerned with the origins of life and evolution of biosystems. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers.
期刊最新文献
Effect of Eight-Week Transcranial Direct-Current Stimulation Combined with Lat Pull-Down Resistance Training on Improving Pull-Up Performance for Male College Students. Spleno-Mesenteric Venous Blood Flow Dynamics in Adult Patients with Chronic Portal Vein Thrombosis Analyzed by Sequential CT-Spleno- and Mesenterico-Portography. Functional Connectivity and MRI Radiomics Biomarkers of Cognitive and Brain Reserve in Post-Stroke Cognitive Impairment Prediction-A Study Protocol. Limitations of the Boston Carpal Tunnel Questionnaire in Assessing Severity in a Homogeneous Occupational Cohort. Metformin for Treating Gestational Diabetes: What Have We Learned During the Last Two Decades? A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1