Machine Learning-Based Radiomics Analysis for Identifying KRAS Mutations in Non-Small-Cell Lung Cancer from CT Images: Challenges, Insights and Implications.

IF 3.2 3区 生物学 Q1 BIOLOGY Life-Basel Pub Date : 2025-01-11 DOI:10.3390/life15010083
Mirjam Schöneck, Nicolas Rehbach, Lars Lotter-Becker, Thorsten Persigehl, Simon Lennartz, Liliana Lourenco Caldeira
{"title":"Machine Learning-Based Radiomics Analysis for Identifying KRAS Mutations in Non-Small-Cell Lung Cancer from CT Images: Challenges, Insights and Implications.","authors":"Mirjam Schöneck, Nicolas Rehbach, Lars Lotter-Becker, Thorsten Persigehl, Simon Lennartz, Liliana Lourenco Caldeira","doi":"10.3390/life15010083","DOIUrl":null,"url":null,"abstract":"<p><p>Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is a frequently occurring mutation in non-small-cell lung cancer (NSCLC) and influences cancer treatment and disease progression. In this study, a machine learning (ML) pipeline was applied to radiomic features extracted from public and internal CT images to identify KRAS mutations in NSCLC patients. Both datasets were analyzed using parametric (<i>t</i> test) and non-parametric statistical tests (Mann-Whitney U test) and dimensionality reduction techniques. Afterwards, the proposed ML pipeline was applied to both datasets using a five-fold cross-validation on the training set (70/30 train/test split) before being validated on the other dataset. The results show that the radiomic features are significantly different (Mann-Whitney U test; <i>p</i> < 0.05) between the two datasets, despite the use of identical feature extraction methods. Model transferability is therefore difficult to achieve, which became evident during external testing (F1 score = 0.41). Oversampling, undersampling, clustering and harmonization techniques were applied to balance and harmonize the datasets, but did not improve the classification of KRAS mutation presence. In general, due to only a single moderate result (highest test F1 score = 0.67), the accuracy of KRAS prediction is not sufficient for clinical application. In future work, the complexity of KRAS mutation might be addressed by taking submutations into consideration. Larger multicentric datasets with balanced tumor stages, including multi-scanner datasets, seem to be necessary for building robust predictive models.</p>","PeriodicalId":56144,"journal":{"name":"Life-Basel","volume":"15 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/life15010083","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is a frequently occurring mutation in non-small-cell lung cancer (NSCLC) and influences cancer treatment and disease progression. In this study, a machine learning (ML) pipeline was applied to radiomic features extracted from public and internal CT images to identify KRAS mutations in NSCLC patients. Both datasets were analyzed using parametric (t test) and non-parametric statistical tests (Mann-Whitney U test) and dimensionality reduction techniques. Afterwards, the proposed ML pipeline was applied to both datasets using a five-fold cross-validation on the training set (70/30 train/test split) before being validated on the other dataset. The results show that the radiomic features are significantly different (Mann-Whitney U test; p < 0.05) between the two datasets, despite the use of identical feature extraction methods. Model transferability is therefore difficult to achieve, which became evident during external testing (F1 score = 0.41). Oversampling, undersampling, clustering and harmonization techniques were applied to balance and harmonize the datasets, but did not improve the classification of KRAS mutation presence. In general, due to only a single moderate result (highest test F1 score = 0.67), the accuracy of KRAS prediction is not sufficient for clinical application. In future work, the complexity of KRAS mutation might be addressed by taking submutations into consideration. Larger multicentric datasets with balanced tumor stages, including multi-scanner datasets, seem to be necessary for building robust predictive models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Life-Basel
Life-Basel Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
4.30
自引率
6.20%
发文量
1798
审稿时长
11 weeks
期刊介绍: Life (ISSN 2075-1729) is an international, peer-reviewed open access journal of scientific studies related to fundamental themes in Life Sciences, especially those concerned with the origins of life and evolution of biosystems. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers.
期刊最新文献
Effect of Eight-Week Transcranial Direct-Current Stimulation Combined with Lat Pull-Down Resistance Training on Improving Pull-Up Performance for Male College Students. Spleno-Mesenteric Venous Blood Flow Dynamics in Adult Patients with Chronic Portal Vein Thrombosis Analyzed by Sequential CT-Spleno- and Mesenterico-Portography. Functional Connectivity and MRI Radiomics Biomarkers of Cognitive and Brain Reserve in Post-Stroke Cognitive Impairment Prediction-A Study Protocol. Limitations of the Boston Carpal Tunnel Questionnaire in Assessing Severity in a Homogeneous Occupational Cohort. Metformin for Treating Gestational Diabetes: What Have We Learned During the Last Two Decades? A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1