Dimethyl Fumarate attenuates synovial inflammation, reduces nociception, and inhibits the development of post-traumatic osteoarthritis

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biomedicine & Pharmacotherapy Pub Date : 2025-02-01 DOI:10.1016/j.biopha.2025.117865
Nazir M. Khan , Jarred M. Kaiser , Samir Chihab , Tracy Eng , Hicham Drissi
{"title":"Dimethyl Fumarate attenuates synovial inflammation, reduces nociception, and inhibits the development of post-traumatic osteoarthritis","authors":"Nazir M. Khan ,&nbsp;Jarred M. Kaiser ,&nbsp;Samir Chihab ,&nbsp;Tracy Eng ,&nbsp;Hicham Drissi","doi":"10.1016/j.biopha.2025.117865","DOIUrl":null,"url":null,"abstract":"<div><div>There is currently no cure or disease-modifying treatment for post-traumatic osteoarthritis (PTOA). This study aims to assess the efficacy of dimethyl fumarate (DMF), a US-FDA approved drug for multiple sclerosis, as a treatment for PTOA. PTOA was induced in male Lewis rats by medial meniscal transection (MMT) surgery, and DMF was intra-articularly administered once, one week following surgery. PTOA progression was evaluated using histological, molecular, and radiographic analyses, while secondary allodynia was measured longitudinally, and pain-related markers expression were analyzed in dorsal root ganglion (DRG). 3D radiographic imaging by µCT analysis revealed that DMF treatment attenuated cartilage degradation by decreasing cartilage lesions, surface roughness, and osteophyte formation in the proximal tibiae. Histological analysis showed that DMF markedly inhibited cartilage erosion and cartilage surface fibrillation. Gene expression and Luminex analysis indicated that DMF suppressed joint inflammation by inhibiting inflammatory cytokines. DMF mitigated allodynic pain behavior at 6 weeks and repressed pain mediator expression (Calca, Tac1, Trpv1) in lumbar DRGs. Additionally, DMF treatment inhibited inflammatory gene expression and cytokine secretion induced by IL1β stimulation of human articular chondrocytes <em>in vitro</em>. Mechanistically, DMF treatment reduced colony-stimulating factor 2 (CSF2 or GM-CSF) level in the synovial fluid <em>in vivo</em> and inhibited its expression in human OA chondrocytes. Furthermore, siRNA targeting of CSF2 reduced inflammatory gene expression in human chondrocytes. The findings suggest that DMF reduced inflammatory gene expression, inhibited cartilage degeneration, and mitigated PTOA development in rats. It also alleviated pain behavior indicating its potential as a disease-modifying therapy for PTOA.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"183 ","pages":"Article 117865"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225000599","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

There is currently no cure or disease-modifying treatment for post-traumatic osteoarthritis (PTOA). This study aims to assess the efficacy of dimethyl fumarate (DMF), a US-FDA approved drug for multiple sclerosis, as a treatment for PTOA. PTOA was induced in male Lewis rats by medial meniscal transection (MMT) surgery, and DMF was intra-articularly administered once, one week following surgery. PTOA progression was evaluated using histological, molecular, and radiographic analyses, while secondary allodynia was measured longitudinally, and pain-related markers expression were analyzed in dorsal root ganglion (DRG). 3D radiographic imaging by µCT analysis revealed that DMF treatment attenuated cartilage degradation by decreasing cartilage lesions, surface roughness, and osteophyte formation in the proximal tibiae. Histological analysis showed that DMF markedly inhibited cartilage erosion and cartilage surface fibrillation. Gene expression and Luminex analysis indicated that DMF suppressed joint inflammation by inhibiting inflammatory cytokines. DMF mitigated allodynic pain behavior at 6 weeks and repressed pain mediator expression (Calca, Tac1, Trpv1) in lumbar DRGs. Additionally, DMF treatment inhibited inflammatory gene expression and cytokine secretion induced by IL1β stimulation of human articular chondrocytes in vitro. Mechanistically, DMF treatment reduced colony-stimulating factor 2 (CSF2 or GM-CSF) level in the synovial fluid in vivo and inhibited its expression in human OA chondrocytes. Furthermore, siRNA targeting of CSF2 reduced inflammatory gene expression in human chondrocytes. The findings suggest that DMF reduced inflammatory gene expression, inhibited cartilage degeneration, and mitigated PTOA development in rats. It also alleviated pain behavior indicating its potential as a disease-modifying therapy for PTOA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
期刊最新文献
Vagus nerve stimulation: A targeted approach for reducing tissue-specific ischemic reperfusion injury Oregano polyphenols reduce human insulin amyloid aggregation A novel missense mutation Smad4 V354L enhances the efficacy of docetaxel in non-small cell lung cancer Examining the pharmacokinetic and pharmacodynamic interaction of N,N-dimethyltryptamine and harmine in healthy volunteers: Α factorial dose-escalation study Thiopurine S-methyltransferase – An important intersection of drug-drug interactions in thiopurine treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1