Selenium modulates bisphenol A-induced intestinal apoptosis, oxidative stress and autophagy in rats: A biochemical, histological and immunohistochemical study.

Ola Mohammed Youssef, Nehal I A Goda, Mona A Hassan, Nora Elshehawy Helal
{"title":"Selenium modulates bisphenol A-induced intestinal apoptosis, oxidative stress and autophagy in rats: A biochemical, histological and immunohistochemical study.","authors":"Ola Mohammed Youssef, Nehal I A Goda, Mona A Hassan, Nora Elshehawy Helal","doi":"10.1080/19338244.2025.2455098","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol A (BPA) is a hazardous endocrine disruptor released into the environment during the production of certain plastics used for covering of food and beverage cans. In this work, we examined the protective benefits of selenium (Se) against intestinal damage induced by BPA in male rats. Rats were distributed randomly into four groups. The first group received corn oil and served as the control. The second group was administered Se (1 mg/kg body weight; BW). The third group was given oral BPA (50 mg/kg BW). In the fourth group, Se (1 mg/kg BW) and BPA (50 mg/kg BW) were administered simultaneously. This experiment lasted for eight weeks. Specimens from the large intestine were subjected to biochemical analysis of antioxidants and oxidative stress biomarkers, histological observation under light and transmission electron microscopy and immunohistochemistry to autophagy and apoptosis markers. The BPA-exposed group showed significantly elevated oxidative stress markers associated with significant decline of antioxidants in intestinal tissues. BPA resulted in histological alterations such as severe mucosal necrosis with massive inflammatory cell infiltration. Ultra-structurally, the same group showed severe loss of the cell organelles, shrunken nuclei, and abundant autophagosomes. Immunohistochemistry results demonstrated a strong reactivity of caspase-3 and LC3 in the BPA group in contrast to the reaction to p62, which was markedly diminished. These effects were mitigated in the BPA+Se group. We concluded that BPA's harmful effects on the large intestine are caused by apoptosis and autophagy. Se may protect intestinal cells from these effects and could be a useful and trustworthy approach for reducing BPA toxicity.</p>","PeriodicalId":93879,"journal":{"name":"Archives of environmental & occupational health","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of environmental & occupational health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19338244.2025.2455098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bisphenol A (BPA) is a hazardous endocrine disruptor released into the environment during the production of certain plastics used for covering of food and beverage cans. In this work, we examined the protective benefits of selenium (Se) against intestinal damage induced by BPA in male rats. Rats were distributed randomly into four groups. The first group received corn oil and served as the control. The second group was administered Se (1 mg/kg body weight; BW). The third group was given oral BPA (50 mg/kg BW). In the fourth group, Se (1 mg/kg BW) and BPA (50 mg/kg BW) were administered simultaneously. This experiment lasted for eight weeks. Specimens from the large intestine were subjected to biochemical analysis of antioxidants and oxidative stress biomarkers, histological observation under light and transmission electron microscopy and immunohistochemistry to autophagy and apoptosis markers. The BPA-exposed group showed significantly elevated oxidative stress markers associated with significant decline of antioxidants in intestinal tissues. BPA resulted in histological alterations such as severe mucosal necrosis with massive inflammatory cell infiltration. Ultra-structurally, the same group showed severe loss of the cell organelles, shrunken nuclei, and abundant autophagosomes. Immunohistochemistry results demonstrated a strong reactivity of caspase-3 and LC3 in the BPA group in contrast to the reaction to p62, which was markedly diminished. These effects were mitigated in the BPA+Se group. We concluded that BPA's harmful effects on the large intestine are caused by apoptosis and autophagy. Se may protect intestinal cells from these effects and could be a useful and trustworthy approach for reducing BPA toxicity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sprinkler irrigation of urban sport fields as a potential source of Legionella. COVID-19 with woman academicians' perspective in Türkiye: Hopelessness and well-being. Selenium modulates bisphenol A-induced intestinal apoptosis, oxidative stress and autophagy in rats: A biochemical, histological and immunohistochemical study. Consideration of the work environment in a case of an industrial homeworker with allergic contact dermatitis by UV-curing acrylic resin. Occupational exposures and age-related cataract: A review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1