An exploratory study of pilot EEG features during the climb and descent phases of flight.

Li Ji, Leiye Yi, Haiwei Li, Wenjie Han, Ningning Zhang
{"title":"An exploratory study of pilot EEG features during the climb and descent phases of flight.","authors":"Li Ji, Leiye Yi, Haiwei Li, Wenjie Han, Ningning Zhang","doi":"10.1515/bmt-2024-0412","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.</p><p><strong>Methods: </strong>By performing wavelet packet decomposition on the EEG signals, we examined EEG maps during these critical phases and analyzed changes in signal intensity. To delve deeper, we calculated the log-transformed power of electroencephalograms to investigate the EEG responses under different flight conditions. Additionally, we conducted EEG spectral coherence analysis to evaluate the degree of synchronization between different electrodes during climb and descent.</p><p><strong>Results: </strong>This analysis helps us understand the functional connectivity changes in various brain regions during these phases. Understanding these complex interactions is crucial, as it provides insights into the cognitive processes of pilots during the critical climb and descent stages of flight, contributing to enhanced aviation safety.</p><p><strong>Conclusions: </strong>By identifying how brain activity fluctuates during these phases, we can better comprehend pilots' decision-making processes, ultimately leading to the development of more effective training programs and safety protocols. This research underscores the importance of neurological studies in safety.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2024-0412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.

Methods: By performing wavelet packet decomposition on the EEG signals, we examined EEG maps during these critical phases and analyzed changes in signal intensity. To delve deeper, we calculated the log-transformed power of electroencephalograms to investigate the EEG responses under different flight conditions. Additionally, we conducted EEG spectral coherence analysis to evaluate the degree of synchronization between different electrodes during climb and descent.

Results: This analysis helps us understand the functional connectivity changes in various brain regions during these phases. Understanding these complex interactions is crucial, as it provides insights into the cognitive processes of pilots during the critical climb and descent stages of flight, contributing to enhanced aviation safety.

Conclusions: By identifying how brain activity fluctuates during these phases, we can better comprehend pilots' decision-making processes, ultimately leading to the development of more effective training programs and safety protocols. This research underscores the importance of neurological studies in safety.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gesture recognition from surface electromyography signals based on the SE-DenseNet network. Wear investigation of implant-supported upper removable prothesis with electroplated gold or PEKK secondary crowns. Integration of neuromuscular control for multidirectional horizontal planar reaching movements in a portable upper limb exoskeleton for enhanced stroke rehabilitation. Empirical analysis on retinal segmentation using PSO-based thresholding in diabetic retinopathy grading. An exploratory study of pilot EEG features during the climb and descent phases of flight.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1