Kang-Ning Yuan, Tian Xie, Jia-Bao Wang, Dali Wang, ming shang
{"title":"Photoelectrocatalyzed Alkylation of Phosphonites by Direct Decarboxylative C(sp3)‐P Coupling","authors":"Kang-Ning Yuan, Tian Xie, Jia-Bao Wang, Dali Wang, ming shang","doi":"10.1002/anie.202500744","DOIUrl":null,"url":null,"abstract":"A photoelectrocatalytic method is presented that achieves direct decarboxylative C(sp3)–P coupling, providing a modular route to alkylphosphinates and alkylphosphonates from readily available carboxylic acids. The success of this reaction hinges on the synergistic combination of electrochemical anodic oxidation and photocatalytic ligand to metal charge transfer (LMCT) decarboxylation. By employing P(III) reagents as limiting reagents, our approach enables efficient alkyl modification of medicinally important nucleosides and complex molecules derived phosphonites, which were challenging to access by existing methods. Detailed mechanistic studies elucidate the critical roles of Fe catalysts and additives, offering valuable insights into the reaction pathway and laying the foundation for future advancements in photoelectrocatalytic C(sp3)–heteroatom bond‐forming reactions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"48 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500744","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A photoelectrocatalytic method is presented that achieves direct decarboxylative C(sp3)–P coupling, providing a modular route to alkylphosphinates and alkylphosphonates from readily available carboxylic acids. The success of this reaction hinges on the synergistic combination of electrochemical anodic oxidation and photocatalytic ligand to metal charge transfer (LMCT) decarboxylation. By employing P(III) reagents as limiting reagents, our approach enables efficient alkyl modification of medicinally important nucleosides and complex molecules derived phosphonites, which were challenging to access by existing methods. Detailed mechanistic studies elucidate the critical roles of Fe catalysts and additives, offering valuable insights into the reaction pathway and laying the foundation for future advancements in photoelectrocatalytic C(sp3)–heteroatom bond‐forming reactions.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.