Quantum order by disorder is a key to understanding the magnetic phases of BaCo2(AsO4)2

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Quantum Materials Pub Date : 2025-01-27 DOI:10.1038/s41535-025-00728-9
Sangyun Lee, Shengzhi Zhang, S. M. Thomas, L. Pressley, C. A. Bridges, Eun Sang Choi, Vivien S. Zapf, Stephen M. Winter, Minseong Lee
{"title":"Quantum order by disorder is a key to understanding the magnetic phases of BaCo2(AsO4)2","authors":"Sangyun Lee, Shengzhi Zhang, S. M. Thomas, L. Pressley, C. A. Bridges, Eun Sang Choi, Vivien S. Zapf, Stephen M. Winter, Minseong Lee","doi":"10.1038/s41535-025-00728-9","DOIUrl":null,"url":null,"abstract":"<p>BaCo<sub>2</sub>(AsO<sub>4</sub>)<sub>2</sub> (BCAO), a honeycomb cobaltate, is considered a promising candidate for materials displaying the Kitaev quantum spin liquid state. This assumption is based on the distinctive characteristics of Co<sup>2+</sup> ions (3<i>d</i><sup>7</sup>) within an octahedral crystal environment, resulting in spin-orbit-coupled <i>J</i><sub>eff</sub> = 1/2 doublet states. However, recent experimental observations and theoretical analyses have raised questions regarding this hypothesis. Despite these uncertainties, reports of continuum excitations reminiscent of spinon excitations have prompted further investigations. In this study, we explore the magnetic phases of BCAO under both in-plane and out-of-plane magnetic fields, employing dc and ac magnetic susceptibilities, capacitance, and torque magnetometry measurement. Our results affirm the existence of multiple field-induced magnetic phases, with strong anisotropy of the phase boundaries between in-plane and out-of-plane fields. To elucidate the nature of these phases, we develop a minimal anisotropic exchange model. This model, supported by combined first principles calculations and theoretical modeling, quantitatively reproduces our experimental data. In BCAO, the combination of strong bond-independent XXZ anisotropy and geometric frustration leads to significant quantum order by disorder effects that stabilize colinear phases under both zero and finite magnetic fields.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"47 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00728-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

BaCo2(AsO4)2 (BCAO), a honeycomb cobaltate, is considered a promising candidate for materials displaying the Kitaev quantum spin liquid state. This assumption is based on the distinctive characteristics of Co2+ ions (3d7) within an octahedral crystal environment, resulting in spin-orbit-coupled Jeff = 1/2 doublet states. However, recent experimental observations and theoretical analyses have raised questions regarding this hypothesis. Despite these uncertainties, reports of continuum excitations reminiscent of spinon excitations have prompted further investigations. In this study, we explore the magnetic phases of BCAO under both in-plane and out-of-plane magnetic fields, employing dc and ac magnetic susceptibilities, capacitance, and torque magnetometry measurement. Our results affirm the existence of multiple field-induced magnetic phases, with strong anisotropy of the phase boundaries between in-plane and out-of-plane fields. To elucidate the nature of these phases, we develop a minimal anisotropic exchange model. This model, supported by combined first principles calculations and theoretical modeling, quantitatively reproduces our experimental data. In BCAO, the combination of strong bond-independent XXZ anisotropy and geometric frustration leads to significant quantum order by disorder effects that stabilize colinear phases under both zero and finite magnetic fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
期刊最新文献
Intrinsic constraint on Tc for unconventional superconductivity Discovery of new topological insulators and semimetals using deep generative models 2.5-dimensional topological superconductivity in twisted superconducting flakes Quantum order by disorder is a key to understanding the magnetic phases of BaCo2(AsO4)2 Pressure-dependent magnetism of the Kitaev candidate Li2RhO3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1