Shuxian Li, Wei Ge, Xiaoyu Huang, Hong Du, Fu Wang
{"title":"Synergistic Intramolecular Charge Transfer Promotes Au Nanoclusters with Enhanced NIR-II Photoluminescence","authors":"Shuxian Li, Wei Ge, Xiaoyu Huang, Hong Du, Fu Wang","doi":"10.1021/acs.jpclett.4c03410","DOIUrl":null,"url":null,"abstract":"Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need. Considering the holistic nature of the core–shell structure of Au NCs, herein, we propose a synergistic intramolecular charge transfer (ICT) strategy to enhance the luminescence. The NIR-II fluorescence quantum yield of Au NCs was increased 6-fold to 5.59% by the synergistic effect of heteroatomic copper doping and ligand p-MBA deprotonation. Experimental characterization results show that the strong p-π conjugation between d<sub>10</sub> metal and the deprotonated p-MBA enhances the charge transfer between the metal core and ligand. The synergistic ICT process strongly suppressed the nonradiative process, thereby enhancing the emission intensity. Our findings provide a facile method for understanding the integrity of the core–shell structure of Au NCs and regulating their photoluminescence properties.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"10 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03410","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need. Considering the holistic nature of the core–shell structure of Au NCs, herein, we propose a synergistic intramolecular charge transfer (ICT) strategy to enhance the luminescence. The NIR-II fluorescence quantum yield of Au NCs was increased 6-fold to 5.59% by the synergistic effect of heteroatomic copper doping and ligand p-MBA deprotonation. Experimental characterization results show that the strong p-π conjugation between d10 metal and the deprotonated p-MBA enhances the charge transfer between the metal core and ligand. The synergistic ICT process strongly suppressed the nonradiative process, thereby enhancing the emission intensity. Our findings provide a facile method for understanding the integrity of the core–shell structure of Au NCs and regulating their photoluminescence properties.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.