Photoactivatable Plant Hormone-Based Chemical Inducers of Proximity for In Vivo Applications.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2025-01-27 DOI:10.1021/acschembio.4c00592
Philipp Pöschko, Caroline M Berrou, Kaisa Pakari, Michael J Ziegler, Christoph Kern, Birgit Koch, Joachim Wittbrodt, Richard Wombacher
{"title":"Photoactivatable Plant Hormone-Based Chemical Inducers of Proximity for <i>In Vivo</i> Applications.","authors":"Philipp Pöschko, Caroline M Berrou, Kaisa Pakari, Michael J Ziegler, Christoph Kern, Birgit Koch, Joachim Wittbrodt, Richard Wombacher","doi":"10.1021/acschembio.4c00592","DOIUrl":null,"url":null,"abstract":"<p><p>Protein interactions play a crucial role in regulating cellular mechanisms, highlighting the need for effective methods to control these processes. In this regard, chemical inducers of proximity (CIPs) offer a promising approach to precisely manipulate protein-protein interactions in live cells and <i>in vivo</i>. In this study, we introduce pMandi, a photocaged version of the plant hormone-based CIP mandipropamid (Mandi), which allows the use of light as an external trigger to induce protein proximity in live mammalian cells. Furthermore, we present opabactin (OP) as a new plant hormone-based CIP that is effective in live mammalian cells at low nanomolar concentration and in live medaka embryos at submicromolar concentration. Its photocaged derivative, pOP, enables the induction of protein proximity upon light exposure in individual cells, enhancing spatiotemporal control to the level of single-cell resolution. Additionally, we explored the use of both photocaged CIPs to promote protein proximity in live medaka embryos.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00592","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein interactions play a crucial role in regulating cellular mechanisms, highlighting the need for effective methods to control these processes. In this regard, chemical inducers of proximity (CIPs) offer a promising approach to precisely manipulate protein-protein interactions in live cells and in vivo. In this study, we introduce pMandi, a photocaged version of the plant hormone-based CIP mandipropamid (Mandi), which allows the use of light as an external trigger to induce protein proximity in live mammalian cells. Furthermore, we present opabactin (OP) as a new plant hormone-based CIP that is effective in live mammalian cells at low nanomolar concentration and in live medaka embryos at submicromolar concentration. Its photocaged derivative, pOP, enables the induction of protein proximity upon light exposure in individual cells, enhancing spatiotemporal control to the level of single-cell resolution. Additionally, we explored the use of both photocaged CIPs to promote protein proximity in live medaka embryos.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Photoactivatable Plant Hormone-Based Chemical Inducers of Proximity for In Vivo Applications. Probing the Signal Transduction Mechanism of the Light-Activated Adenylate Cyclase OaPAC Using Unnatural Amino Acid Mutagenesis. Development of an In Situ G Protein-Coupled Receptor Fragment Molecule Screening Approach with High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance. Tools for Intersectional Optical and Chemical Tagging on Cell Surfaces. Understanding the Glycosylation Pathways Involved in the Biosynthesis of the Sulfated Glycan Ligands for Siglecs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1