Advances in Electrochemical Nitrite Reduction toward Nitric Oxide Synthesis for Biomedical Applications

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-01-26 DOI:10.1002/adhm.202403468
Xun He, Chang Zou, Limei Zhang, Peilin Wu, Yongchao Yao, Kai Dong, Yuchun Ren, Wenchuang (Walter) Hu, Yi Li, Han Luo, Binwu Ying, Fengming Luo, Xuping Sun
{"title":"Advances in Electrochemical Nitrite Reduction toward Nitric Oxide Synthesis for Biomedical Applications","authors":"Xun He,&nbsp;Chang Zou,&nbsp;Limei Zhang,&nbsp;Peilin Wu,&nbsp;Yongchao Yao,&nbsp;Kai Dong,&nbsp;Yuchun Ren,&nbsp;Wenchuang (Walter) Hu,&nbsp;Yi Li,&nbsp;Han Luo,&nbsp;Binwu Ying,&nbsp;Fengming Luo,&nbsp;Xuping Sun","doi":"10.1002/adhm.202403468","DOIUrl":null,"url":null,"abstract":"<p>Nitric oxide (NO) is an essential molecule in biomedicine, recognized for its antibacterial properties, neuronal modulation, and use in inhalation therapies. The effectiveness of NO-based treatments relies on precise control of NO concentrations tailored to specific therapeutic needs. Electrochemical generation of NO (E-NOgen) via nitrite (NO<sub>2</sub><sup>–</sup>) reduction offers a scalable and efficient route for controlled NO production, while also addressing environmental concerns by reducing NO<sub>2</sub><sup>–</sup> pollution and maintaining nitrogen cycle balance. Recent developments in catalysts and E-NOgen devices have propelled NO<sub>2</sub><sup>–</sup> conversion, enabling on-demand NO production. This review provides an overview of NO<sub>2</sub><sup>−</sup> reduction pathways, with a focus on cutting-edge Fe/Cu-based E-NOgen catalysts, and explores the development of E-NOgen devices for biomedical use. Challenges and future directions for advancing E-NOgen technologies are also discussed.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"14 6","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202403468","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nitric oxide (NO) is an essential molecule in biomedicine, recognized for its antibacterial properties, neuronal modulation, and use in inhalation therapies. The effectiveness of NO-based treatments relies on precise control of NO concentrations tailored to specific therapeutic needs. Electrochemical generation of NO (E-NOgen) via nitrite (NO2) reduction offers a scalable and efficient route for controlled NO production, while also addressing environmental concerns by reducing NO2 pollution and maintaining nitrogen cycle balance. Recent developments in catalysts and E-NOgen devices have propelled NO2 conversion, enabling on-demand NO production. This review provides an overview of NO2 reduction pathways, with a focus on cutting-edge Fe/Cu-based E-NOgen catalysts, and explores the development of E-NOgen devices for biomedical use. Challenges and future directions for advancing E-NOgen technologies are also discussed.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电化学亚硝酸盐还原合成生物医学用途一氧化氮的研究进展。
一氧化氮(NO)是生物医学中必不可少的分子,因其抗菌特性、神经元调节和吸入疗法而被认可。一氧化氮治疗的有效性依赖于对一氧化氮浓度的精确控制,以满足特定的治疗需求。通过亚硝酸盐(NO2 -)还原电化学生成NO (E-NOgen)为控制NO生产提供了一种可扩展和有效的途径,同时也通过减少NO2 -污染和维持氮循环平衡来解决环境问题。催化剂和E-NOgen设备的最新发展推动了NO2的转化,使按需生产NO成为可能。本文综述了NO2 -还原途径,重点介绍了Fe/ cu基E-NOgen催化剂,并探讨了生物医学用E-NOgen装置的发展。讨论了推进E-NOgen技术的挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
A Wearable Multimodal Sensor for Simultaneous and Co-Located Muscle Electrophysiological and Mechanical Monitoring. De Novo Development of Bioresponsive Nanoparticles With Antimicrobial Activity to Treat Bacterial Infections. Suspension Culture With Uniform Shear Stress in Brain Organoids-on-a-Chip for Modelling Alzheimer's Disease. Patient-Derived 3D Bioprinted Cardiac Organoid Constructs Reveal Key Pathological Features of Duchenne Muscular Dystrophy. Microneedle Stent for Intravascular Anchoring Effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1