Synthesis of SnO₂/COF green nanomaterials for effective pesticide decomposition and promoting tomato plants growth.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - An Asian Journal Pub Date : 2025-01-27 DOI:10.1002/asia.202401856
Shoaib Khan, Aoxue Wang, Jiayin Liu, Iltaf Khan, Laiba Mujahid, Meng Ruijin, Samreen Sadiq, Saeed Zaman, Aftab Khan, Sohail Khan, Mansoor Khan, Yuanyang Miao
{"title":"Synthesis of SnO₂/COF green nanomaterials for effective pesticide decomposition and promoting tomato plants growth.","authors":"Shoaib Khan, Aoxue Wang, Jiayin Liu, Iltaf Khan, Laiba Mujahid, Meng Ruijin, Samreen Sadiq, Saeed Zaman, Aftab Khan, Sohail Khan, Mansoor Khan, Yuanyang Miao","doi":"10.1002/asia.202401856","DOIUrl":null,"url":null,"abstract":"<p><p>In last few decades, the agriculture sector is facing various type of crops diseases originated by crop pests. Among various crops the tomato plant is greatly affected by many pests such as aphids and whiteflies, which are badly decreasing tomato plant yield and effecting its growth. In last few years, various type of pesticides such as Neonicotinoids and Pyrethroids are employed with are badly effecting eco system and water bodies. In this research work, we prepared SnO2 nanosheets (SONS) by in-situ and green synthesis approach. Remarkably, SONS exhibit a larger surface area, tailored pore size, and higher catalytic performance than SnO2 nanoparticles (SONP). To further improve the efficiency of SONS, we coupled it with covalent organic farmwork nanosheets (COFNS) via the hydrothermal approach. The SONS@COFNS hybrid nanocatalysts exhibit improved carrier migration, enhanced porosity, multiple active sites, and exceptional light absorption capabilities. The as prepared green nanomaterials delivered improved activities for Neonicotinoids and Pyrethroids degradation. Remarkably, the most active sample 6COFNS/SONS showed the highest degradation efficiency (94%), which is approximately 1.92 times higher than the degradation efficiency of pristine SONS (49%). This work will ultimately contribute to developing green, ecofriendly nanomaterials for pesticides degradation and promoting tomato plants growth.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401856"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401856","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In last few decades, the agriculture sector is facing various type of crops diseases originated by crop pests. Among various crops the tomato plant is greatly affected by many pests such as aphids and whiteflies, which are badly decreasing tomato plant yield and effecting its growth. In last few years, various type of pesticides such as Neonicotinoids and Pyrethroids are employed with are badly effecting eco system and water bodies. In this research work, we prepared SnO2 nanosheets (SONS) by in-situ and green synthesis approach. Remarkably, SONS exhibit a larger surface area, tailored pore size, and higher catalytic performance than SnO2 nanoparticles (SONP). To further improve the efficiency of SONS, we coupled it with covalent organic farmwork nanosheets (COFNS) via the hydrothermal approach. The SONS@COFNS hybrid nanocatalysts exhibit improved carrier migration, enhanced porosity, multiple active sites, and exceptional light absorption capabilities. The as prepared green nanomaterials delivered improved activities for Neonicotinoids and Pyrethroids degradation. Remarkably, the most active sample 6COFNS/SONS showed the highest degradation efficiency (94%), which is approximately 1.92 times higher than the degradation efficiency of pristine SONS (49%). This work will ultimately contribute to developing green, ecofriendly nanomaterials for pesticides degradation and promoting tomato plants growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
期刊最新文献
Ribose Sugar Alters Conformational Sampling of G•T Mismatched Duplex DNA. White Fluorescent Carbon Dots for Specific Fe3+ Detection and Imaging Applications. Highly Crystalline and Flexible Covalent Organic Frameworks: Advancing Efficient Iodine Adsorption. Rhodamine-Gold Hybrid Nanosensor for Rapid and Selective Detection of Hg2+ Ions in Environmental Samples. Synthesis of SnO₂/COF green nanomaterials for effective pesticide decomposition and promoting tomato plants growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1