In-Situ Construction of LiCl-Rich Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Anode

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2025-01-25 DOI:10.1002/cssc.202402638
Zhen Chen, Xi Wang, Shengjie Qian, Hai-Peng Liang, Minghua Chen, Zexiang Shen
{"title":"In-Situ Construction of LiCl-Rich Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Anode","authors":"Zhen Chen,&nbsp;Xi Wang,&nbsp;Shengjie Qian,&nbsp;Hai-Peng Liang,&nbsp;Minghua Chen,&nbsp;Zexiang Shen","doi":"10.1002/cssc.202402638","DOIUrl":null,"url":null,"abstract":"<p>In the pursuit of high-energy-density lithium metal batteries (LMBs), the development of stable solid electrolyte interphase (SEI) is critical to address issues such as lithium dendrite growth and low Coulombic efficiency. Herein, we propose a facile strategy for the <i>in-situ</i> fabrication of a LiCl-rich artificial SEI layer on Li surfaces through reaction of MoCl<sub>5</sub> with Li (Li@MoCl<sub>5</sub>). The resulting artificial SEI significantly enhances the uniformity of Li deposition, effectively suppresses dendrite formation, and improves electrochemical performance. As a result, Li@MoCl<sub>5</sub> symmetric cells demonstrate remarkable stability, achieving continuous cycling of 4200 h under a high current density of 10 mA cm<sup>−2</sup> with an areal capacity of 1 mAh cm<sup>−2</sup>. Full-cells employing Li@MoCl<sub>5</sub> exhibit superior cycling stability and rate capability, even at high cathode loading (17 mg cm<sup>−2</sup>). These results highlight the potential of this interface engineering strategy for advanced practical application of LMBs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 11","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202402638","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the pursuit of high-energy-density lithium metal batteries (LMBs), the development of stable solid electrolyte interphase (SEI) is critical to address issues such as lithium dendrite growth and low Coulombic efficiency. Herein, we propose a facile strategy for the in-situ fabrication of a LiCl-rich artificial SEI layer on Li surfaces through reaction of MoCl5 with Li (Li@MoCl5). The resulting artificial SEI significantly enhances the uniformity of Li deposition, effectively suppresses dendrite formation, and improves electrochemical performance. As a result, Li@MoCl5 symmetric cells demonstrate remarkable stability, achieving continuous cycling of 4200 h under a high current density of 10 mA cm−2 with an areal capacity of 1 mAh cm−2. Full-cells employing Li@MoCl5 exhibit superior cycling stability and rate capability, even at high cathode loading (17 mg cm−2). These results highlight the potential of this interface engineering strategy for advanced practical application of LMBs.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能金属锂负极富licl人工固体电解质界面的原位构建。
在追求高能量密度锂金属电池(LMB)的过程中,开发稳定的固体电解质相(SEI)对于解决锂枝晶生长和库仑效率低等问题至关重要。在此,我们提出了一种简便的策略,通过 MoCl5 与 Li(Li@MoCl5)反应,在锂表面原位制备富含 LiCl 的人工 SEI 层。由此产生的人工 SEI 能显著提高锂沉积的均匀性,有效抑制枝晶的形成,并改善电化学性能。因此,Li@MoCl5 对称电池表现出卓越的稳定性,在 10 mA cm-2 的高电流密度下可实现 4200 小时的连续循环,平均容量为 1 mAh cm-2。采用 Li@MoCl5 的全电池表现出卓越的循环稳定性和速率能力,即使在阴极负载较高(17 毫克/厘米-2)的情况下也是如此。这些结果凸显了这种界面工程策略在 LMB 高级实际应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
dimethylformamide (DMF)
阿拉丁
Molybdenum pentachloride (MoCl5)
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Molecular-Bridged Core-Shell TiO2@CuFe Conductive Metal-Organic Framework Photoanode for Hydroxyl Radical-Mediated Selective Glycerol Oxidation to Glyceraldehyde. Material Engineering of Cu0/Cu+ Sites and Oxygen Vacancies for Efficient In Situ Hydrodeoxygenation of Lignin-Based Compounds. Influence of Impurities on the Electrochemical Upcycling of Biomass. Ozonolysis of Lignin: From Extensive Degradation to Selective Ring-Opening Oxidation. Design of Alkaline Earth-Doped Co/MgO Catalysts for Ammonia Decomposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1