{"title":"Recent advances in nutraceutical delivery systems constructed by protein–polysaccharide complexes: A systematic review","authors":"Tianqi Cao, Zihao Wei, Changhu Xue","doi":"10.1111/1541-4337.70115","DOIUrl":null,"url":null,"abstract":"<p>Most nutraceuticals have low stability and solubility, making it difficult to achieve ideal bioavailability by directly incorporating into food. Therefore, constructing delivery systems to protect nutraceuticals is an essential strategy. Proteins and polysaccharides have become ideal materials for encapsulating nutraceuticals due to their superior nutritional value, edible safety, and physicochemical properties. This review first introduces the binding methods of protein–polysaccharide complexes and analyzes their respective merits, defects, and applications. Then, various protein–polysaccharide complex-based nutraceutical delivery systems are systematically summarized, including emulsions, gels, nanoparticles, microcapsules, complexes, and films, which can improve the stability, encapsulation efficiency, and bioaccessibility of nutraceuticals. In addition to traditional globular proteins mentioned in previous reviews, this review also introduces the advantages of another morphology of proteins (protein fibrils with linear structure) in the formation of protein–polysaccharide complexes and the construction of nutraceutical delivery systems. Next, the affecting factors are analyzed to achieve the precise control of protein–polysaccharide complex-based nutraceutical delivery systems. To improve public acceptability of protein–polysaccharide complex-based nutraceutical delivery systems, the safety and regulatory aspects are also discussed in detail. Moreover, the applications of such delivery systems are presented, including dietary supplements, food ingredients, food packaging, and food detection. Finally, several promising research directions that had not been provided before are innovatively proposed, including cell-cultured meat scaffolds, plant-based meat analogs, three-dimensional printing inks, and “three reductions” foods. Overall, this review provides guidance for designing protein–polysaccharide complex-based nutraceutical delivery systems with customized nutrition and superior bioavailability.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70115","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Most nutraceuticals have low stability and solubility, making it difficult to achieve ideal bioavailability by directly incorporating into food. Therefore, constructing delivery systems to protect nutraceuticals is an essential strategy. Proteins and polysaccharides have become ideal materials for encapsulating nutraceuticals due to their superior nutritional value, edible safety, and physicochemical properties. This review first introduces the binding methods of protein–polysaccharide complexes and analyzes their respective merits, defects, and applications. Then, various protein–polysaccharide complex-based nutraceutical delivery systems are systematically summarized, including emulsions, gels, nanoparticles, microcapsules, complexes, and films, which can improve the stability, encapsulation efficiency, and bioaccessibility of nutraceuticals. In addition to traditional globular proteins mentioned in previous reviews, this review also introduces the advantages of another morphology of proteins (protein fibrils with linear structure) in the formation of protein–polysaccharide complexes and the construction of nutraceutical delivery systems. Next, the affecting factors are analyzed to achieve the precise control of protein–polysaccharide complex-based nutraceutical delivery systems. To improve public acceptability of protein–polysaccharide complex-based nutraceutical delivery systems, the safety and regulatory aspects are also discussed in detail. Moreover, the applications of such delivery systems are presented, including dietary supplements, food ingredients, food packaging, and food detection. Finally, several promising research directions that had not been provided before are innovatively proposed, including cell-cultured meat scaffolds, plant-based meat analogs, three-dimensional printing inks, and “three reductions” foods. Overall, this review provides guidance for designing protein–polysaccharide complex-based nutraceutical delivery systems with customized nutrition and superior bioavailability.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.