A Novel Valveless Pulsatile Flow Pump for Extracorporeal Blood Circulation.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Annals of Biomedical Engineering Pub Date : 2025-01-26 DOI:10.1007/s10439-024-03672-0
Joaquín Anatol, Emanuele Vignali, Emanuele Gasparotti, Francisco Castro-Ruiz, Manuel Rubio, César Barrios-Collado, Jose Sierra-Pallares, Simona Celi
{"title":"A Novel Valveless Pulsatile Flow Pump for Extracorporeal Blood Circulation.","authors":"Joaquín Anatol, Emanuele Vignali, Emanuele Gasparotti, Francisco Castro-Ruiz, Manuel Rubio, César Barrios-Collado, Jose Sierra-Pallares, Simona Celi","doi":"10.1007/s10439-024-03672-0","DOIUrl":null,"url":null,"abstract":"<p><p>Extracorporeal Membrane Oxygenation (ECMO) is a modality of extracorporeal life support which allows temporary support in cases of cardiopulmonary failure and cardiogenic shock. This study presents a valveless pump that works by the Liebau effect as a possible pumping system in ECMO circuits, replacing the current roller and centrifugal pumps. For this purpose, a mock circulatory loop emulating the haemodynamic of the right part of the heart has been constructed. A veno-venous ECMO circuit with the integrated Liebau pump has been incorporated to analyse its performance. The Liebau pump in the ECMO circuit showed a flow assistance in the range of paediatric ECMO and low blood flow range for adults. In addition, experimental tests conducted demonstrated the advantage of the Liebau pump over currently used pumps as the ability to generate a pulsatile flow, which has many advantages in biomedical applications.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03672-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Extracorporeal Membrane Oxygenation (ECMO) is a modality of extracorporeal life support which allows temporary support in cases of cardiopulmonary failure and cardiogenic shock. This study presents a valveless pump that works by the Liebau effect as a possible pumping system in ECMO circuits, replacing the current roller and centrifugal pumps. For this purpose, a mock circulatory loop emulating the haemodynamic of the right part of the heart has been constructed. A veno-venous ECMO circuit with the integrated Liebau pump has been incorporated to analyse its performance. The Liebau pump in the ECMO circuit showed a flow assistance in the range of paediatric ECMO and low blood flow range for adults. In addition, experimental tests conducted demonstrated the advantage of the Liebau pump over currently used pumps as the ability to generate a pulsatile flow, which has many advantages in biomedical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
期刊最新文献
Enhancing Bioactivity of Titanium-Based Materials Through Chitosan Based Coating and Calcitriol Functionalization. A Novel Valveless Pulsatile Flow Pump for Extracorporeal Blood Circulation. Measurement and Assessment of Head-to-Helmet Contact Forces. Mechanical Wear of Degraded Articular Cartilage. Alterations in Muscle Coordination to Reduce Knee Joint Loading for People with Limb Loss.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1