AKT activation participates in Fascin-1-induced EMT in hepatoma cells.

IF 1.7 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cytotechnology Pub Date : 2025-04-01 Epub Date: 2025-01-25 DOI:10.1007/s10616-025-00707-9
Pengju Zhao, Kewei Ai, Yi Li, Wei Cheng, Jiwu Yang
{"title":"AKT activation participates in Fascin-1-induced EMT in hepatoma cells.","authors":"Pengju Zhao, Kewei Ai, Yi Li, Wei Cheng, Jiwu Yang","doi":"10.1007/s10616-025-00707-9","DOIUrl":null,"url":null,"abstract":"<p><p>High expression of Fascin-1 involves high metastasis, high recurrence, and poor prognosis of cancers. However, the related regulatory mechanism in hepatocellular carcinoma (HCC) remains elusive. In this study, Fascin-1 was highly expressed in HCC tissues and cell lines. Fastin-1 protein levels and p-Akt1/Akt1 rate were increased by Akt activator SC79 and were decreased by Akt inhibitor LY294002. Silenced Fascin-1 suppressed cell proliferation, promoted cell apoptosis, suppressed cell invasion and epithelial-mesenchymal transition (EMT) in HCC cell lines. Also, silenced Fascin-1 induced cell cycle arrest in the G1 phase. Moreover, silenced Fascin-1 repressed invasion of HCC cells by inhibiting EMT. Besides, interference with Fascin-1 inhibited HCC cell growth, reduced Vimentin expressions and p-Akt1/Akt1 rate in vivo, while these impacts were abolished after injection of SC79. In conclusion, silencing Fascin-1 reduced the malignant growth of HCC, and this process was closely related to AKT inactivation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-025-00707-9.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"46"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00707-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High expression of Fascin-1 involves high metastasis, high recurrence, and poor prognosis of cancers. However, the related regulatory mechanism in hepatocellular carcinoma (HCC) remains elusive. In this study, Fascin-1 was highly expressed in HCC tissues and cell lines. Fastin-1 protein levels and p-Akt1/Akt1 rate were increased by Akt activator SC79 and were decreased by Akt inhibitor LY294002. Silenced Fascin-1 suppressed cell proliferation, promoted cell apoptosis, suppressed cell invasion and epithelial-mesenchymal transition (EMT) in HCC cell lines. Also, silenced Fascin-1 induced cell cycle arrest in the G1 phase. Moreover, silenced Fascin-1 repressed invasion of HCC cells by inhibiting EMT. Besides, interference with Fascin-1 inhibited HCC cell growth, reduced Vimentin expressions and p-Akt1/Akt1 rate in vivo, while these impacts were abolished after injection of SC79. In conclusion, silencing Fascin-1 reduced the malignant growth of HCC, and this process was closely related to AKT inactivation.

Supplementary information: The online version contains supplementary material available at 10.1007/s10616-025-00707-9.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AKT激活参与了fastin -1诱导的肝癌细胞EMT。
fasin -1的高表达与肿瘤的高转移、高复发、预后差有关。然而,肝细胞癌(HCC)的相关调控机制尚不清楚。本研究中,fasin -1在HCC组织和细胞系中高表达。Akt激活剂SC79增加了fatin -1蛋白水平和p-Akt1/Akt1比率,Akt抑制剂LY294002降低了fatin -1蛋白水平。沉默的fasin -1抑制HCC细胞系细胞增殖,促进细胞凋亡,抑制细胞侵袭和上皮间质转化(EMT)。此外,沉默的fasin -1诱导细胞周期阻滞在G1期。此外,沉默的fastin -1通过抑制EMT抑制HCC细胞的侵袭。此外,干扰fastin -1抑制HCC细胞生长,降低体内Vimentin表达和p-Akt1/Akt1比率,而注射SC79后这些影响被消除。综上所述,沉默fasin -1可降低HCC的恶性生长,这一过程与AKT失活密切相关。补充信息:在线版本包含补充资料,可在10.1007/s10616-025-00707-9获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
期刊最新文献
Assessment of cytotoxicity and induction of apoptosis by cytolysin-A in MCF-7 human breast cancer cell line. Correction: Salviaflaside in water-soluble fraction of heated water extracted from defatted Perilla frutescens Britton var. japonica Hara seed residue suppresses osteoclast differentiation. Anti-melanogenesis and supportive anti-aging potential of L-(+)-Lactic acid from bamboo (Phyllostachys pubescens) shoots. Licochalcone B inhibits oxidative stress and ferroptosis in diabetic nephropathy through regulating ATF3/SLC7A11/GPX4 axis. The Inhibition of CDK4/6 regulates the activity of multidrug resistance pumps in glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1