Expression and role of CTHRC1 in inflammatory bowel disease in children.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cytotechnology Pub Date : 2025-04-01 Epub Date: 2025-01-25 DOI:10.1007/s10616-025-00705-x
Heng Tang, Xiang Gao, Zhaofang Wu, Jia Chen, Li Chen, Xiang Du
{"title":"Expression and role of CTHRC1 in inflammatory bowel disease in children.","authors":"Heng Tang, Xiang Gao, Zhaofang Wu, Jia Chen, Li Chen, Xiang Du","doi":"10.1007/s10616-025-00705-x","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a chronic, progressive, immune-mediated, gastrointestinal inflammatory disease with increasing occurrences in children. Collagen triple helix repeat containing 1 (CTHRC1), a migration-promoting protein, acts as a tumor-promoting factor in malignant tumors. However, functions and mechanisms of CTHRC1 in children with IBD remain unclear. This study aimed to determine the effects and mechanisms of CTHRC1 on dextran sodium sulfate (DSS)-treated HT-29 cells. HT-29 control cells were exposed to 2% DSS to develop an in vitro IBD model. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to assess CTHRC1 expression in serum of children with IBD and HT-29 cells. Cell viability and apoptosis were assessed using MTT and flow cytometry (FCM). Expressions of cleaved-Caspase3 and Caspase3 were determined by western blotting. The cytokine production (TNF-α, IL-1β and IL-6) in HT-29 cells was measured by ELISA assay. Activation or inactivation of NF-κB signaling pathway was confirmed by western blot assay. Results showed that CTHRC1 expression was upregulated in the IBD serum and HT-29 control cells. The level of CTHRC1 was lower in CTHRC1-siRNA transfected cells than in control siRNA-treated cells. Notably, silence of CTHRC1 markedly enhanced HT-29 cells viability, decreased apoptotic cells, suppressed cleaved-Caspase3 expression, inhibited cleaved-Caspase3/Caspase3 ratio, reduced the production of inflammatory cytokines, and blocked NF-κB signaling pathway induced by DSS. However, these effects were reversed following diprovocim treatment. Thus, that knockdown of CTHRC1 alleviated DSS-induced HT-29 cell injury by inhibiting the NF-κB signaling pathway in vitro, providing a new therapeutic target for IBD in children.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-025-00705-x.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"44"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00705-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammatory bowel disease (IBD) is a chronic, progressive, immune-mediated, gastrointestinal inflammatory disease with increasing occurrences in children. Collagen triple helix repeat containing 1 (CTHRC1), a migration-promoting protein, acts as a tumor-promoting factor in malignant tumors. However, functions and mechanisms of CTHRC1 in children with IBD remain unclear. This study aimed to determine the effects and mechanisms of CTHRC1 on dextran sodium sulfate (DSS)-treated HT-29 cells. HT-29 control cells were exposed to 2% DSS to develop an in vitro IBD model. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to assess CTHRC1 expression in serum of children with IBD and HT-29 cells. Cell viability and apoptosis were assessed using MTT and flow cytometry (FCM). Expressions of cleaved-Caspase3 and Caspase3 were determined by western blotting. The cytokine production (TNF-α, IL-1β and IL-6) in HT-29 cells was measured by ELISA assay. Activation or inactivation of NF-κB signaling pathway was confirmed by western blot assay. Results showed that CTHRC1 expression was upregulated in the IBD serum and HT-29 control cells. The level of CTHRC1 was lower in CTHRC1-siRNA transfected cells than in control siRNA-treated cells. Notably, silence of CTHRC1 markedly enhanced HT-29 cells viability, decreased apoptotic cells, suppressed cleaved-Caspase3 expression, inhibited cleaved-Caspase3/Caspase3 ratio, reduced the production of inflammatory cytokines, and blocked NF-κB signaling pathway induced by DSS. However, these effects were reversed following diprovocim treatment. Thus, that knockdown of CTHRC1 alleviated DSS-induced HT-29 cell injury by inhibiting the NF-κB signaling pathway in vitro, providing a new therapeutic target for IBD in children.

Supplementary information: The online version contains supplementary material available at 10.1007/s10616-025-00705-x.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
Human IL-1β ELISA KIT
索莱宝
Human IL-6 ELISA KIT
索莱宝
Human TNF-α ELISA KIT
索莱宝
Dimethylsulfoxide
索莱宝
MTT solution
索莱宝
BCA Protein Assay Kit
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
期刊最新文献
AKT activation participates in Fascin-1-induced EMT in hepatoma cells. Expression and role of CTHRC1 in inflammatory bowel disease in children. Expression profiling of circular RNAs in sepsis-induced acute gastrointestinal injury: insights into potential biomarkers and mechanisms. FXYD6 is transcriptionally activated by KLF10 to suppress the aggressiveness of gastric cancer cells. BSP promotes skin wound healing by regulating the expression level of SCEL.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1