Mina53 catalyzes arginine demethylation of p53 to promote tumor growth.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY Cell reports Pub Date : 2025-01-25 DOI:10.1016/j.celrep.2025.115242
Lixiao Zhou, Liyang Yu, Shushu Song, Yong Wang, Qiang Zhu, Meng Li, Yutong Sha, Liang Xu, Xin Shu, Qingqing Liao, Ting Wu, Bing Yang, Siyuan Chai, Bingyi Lin, Liming Wu, Ruhong Zhou, Xiaotao Duan, Chenggang Zhu, Yuanyuan Ruan, Wen Yi
{"title":"Mina53 catalyzes arginine demethylation of p53 to promote tumor growth.","authors":"Lixiao Zhou, Liyang Yu, Shushu Song, Yong Wang, Qiang Zhu, Meng Li, Yutong Sha, Liang Xu, Xin Shu, Qingqing Liao, Ting Wu, Bing Yang, Siyuan Chai, Bingyi Lin, Liming Wu, Ruhong Zhou, Xiaotao Duan, Chenggang Zhu, Yuanyuan Ruan, Wen Yi","doi":"10.1016/j.celrep.2025.115242","DOIUrl":null,"url":null,"abstract":"<p><p>Arginine methylation is a common post-translational modification that plays critical roles in many biological processes. However, the existence of arginine demethylases that remove the modification has not been fully established. Here, we report that Myc-induced nuclear antigen 53 (Mina53), a member of the jumonji C (JmjC) protein family, is an arginine demethylase. Mina53 catalyzes the removal of asymmetric dimethylation at arginine 337 of p53. Mina53-mediated demethylation reduces p53 stability and oligomerization and alters chromatin modifications at the gene promoter, thereby suppressing p53-mediated transcriptional activation and cell-cycle arrest. Mina53 represses p53-dependent tumor suppression both in mouse xenografts and spontaneous tumor models. Moreover, downregulation of p53-mediated gene expression is observed in several types of cancer with elevated expression of Mina53. Thus, our study reveals a regulatory mechanism of p53 homeostasis and activity and, more broadly, defines a paradigm for dynamic arginine methylation in controlling important biological functions.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115242"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115242","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Arginine methylation is a common post-translational modification that plays critical roles in many biological processes. However, the existence of arginine demethylases that remove the modification has not been fully established. Here, we report that Myc-induced nuclear antigen 53 (Mina53), a member of the jumonji C (JmjC) protein family, is an arginine demethylase. Mina53 catalyzes the removal of asymmetric dimethylation at arginine 337 of p53. Mina53-mediated demethylation reduces p53 stability and oligomerization and alters chromatin modifications at the gene promoter, thereby suppressing p53-mediated transcriptional activation and cell-cycle arrest. Mina53 represses p53-dependent tumor suppression both in mouse xenografts and spontaneous tumor models. Moreover, downregulation of p53-mediated gene expression is observed in several types of cancer with elevated expression of Mina53. Thus, our study reveals a regulatory mechanism of p53 homeostasis and activity and, more broadly, defines a paradigm for dynamic arginine methylation in controlling important biological functions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
期刊最新文献
Mina53 catalyzes arginine demethylation of p53 to promote tumor growth. Progenitor effect in the spleen drives early recovery via universal hematopoietic cell inflation. Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single-particle cryo-EM. The spatial landscape of cancer hallmarks reveals patterns of tumor ecological dynamics and drug sensitivity. Cytosolic DNA composition is determined by genomic instability mechanism and regulates dendritic cell-mediated anti-tumor immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1