Ways to Measure Metals: From ICP-MS to XRF.

IF 7.4 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Current Environmental Health Reports Pub Date : 2025-01-27 DOI:10.1007/s40572-025-00473-y
Kolawole E Adesina, Chandler J Burgos, Thomas R Grier, Abu S M Sayam, Aaron J Specht
{"title":"Ways to Measure Metals: From ICP-MS to XRF.","authors":"Kolawole E Adesina, Chandler J Burgos, Thomas R Grier, Abu S M Sayam, Aaron J Specht","doi":"10.1007/s40572-025-00473-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation.</p><p><strong>Recent findings: </strong>Recent studies highlight enhanced capabilities of both ICP-MS and XRF technologies, making them more adaptable to various analytical needs. ICP-MS is renowned for its unmatched sensitivity and precision in detecting ultra-trace metals and metalloids in complex biological samples, such as lead in plasma or seawater. XRF advancements include lower detection limits and reduced sample preparation time, enabling rapid, non-destructive analyses, ideal for quick field assessments. Portable XRF analyzers have revolutionized on-the-spot testing, providing robust data without traditional wet-lab constraints. Moreover, hybrid techniques combining ICP-MS and XRF features are emerging, offering rapid and precise metal analysis for environmental monitoring, clinical diagnostics, and epidemiological studies. Matching analytical methods to specific research demands is critical. ICP-MS is the gold standard for detailed quantitative analysis in laboratories, while XRF excels in non-destructive, immediate field applications. Selection should consider sample complexity, sensitivity, speed, and cost-efficiency. Integrating ICP-MS and XRF offers a versatile approach to metals analysis, transforming practices in environmental science and healthcare diagnostics. As these technologies evolve, they are promising to expand capabilities in detecting and understanding the roles of metals and metalloids in health and the environment.</p>","PeriodicalId":10775,"journal":{"name":"Current Environmental Health Reports","volume":"12 1","pages":"7"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Environmental Health Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40572-025-00473-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of review: This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation.

Recent findings: Recent studies highlight enhanced capabilities of both ICP-MS and XRF technologies, making them more adaptable to various analytical needs. ICP-MS is renowned for its unmatched sensitivity and precision in detecting ultra-trace metals and metalloids in complex biological samples, such as lead in plasma or seawater. XRF advancements include lower detection limits and reduced sample preparation time, enabling rapid, non-destructive analyses, ideal for quick field assessments. Portable XRF analyzers have revolutionized on-the-spot testing, providing robust data without traditional wet-lab constraints. Moreover, hybrid techniques combining ICP-MS and XRF features are emerging, offering rapid and precise metal analysis for environmental monitoring, clinical diagnostics, and epidemiological studies. Matching analytical methods to specific research demands is critical. ICP-MS is the gold standard for detailed quantitative analysis in laboratories, while XRF excels in non-destructive, immediate field applications. Selection should consider sample complexity, sensitivity, speed, and cost-efficiency. Integrating ICP-MS and XRF offers a versatile approach to metals analysis, transforming practices in environmental science and healthcare diagnostics. As these technologies evolve, they are promising to expand capabilities in detecting and understanding the roles of metals and metalloids in health and the environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.60
自引率
1.30%
发文量
47
期刊介绍: Current Environmental Health Reports provides up-to-date expert reviews in environmental health. The goal is to evaluate and synthesize original research in all disciplines relevant for environmental health sciences, including basic research, clinical research, epidemiology, and environmental policy.
期刊最新文献
Hurricanes and Health Equity: A Review of Structural Determinants of Vulnerability for Climate and Health Research. Effects of Early-life PFAS Exposure on Child Neurodevelopment: A Review of the Evidence and Research gaps. A Systematic Review and Meta-Analysis Assessing the Impact of Improved Cookstove Technology Trials (ICTs) on Household Air Pollution and Human Health in Sub-Saharan Africa. Ways to Measure Metals: From ICP-MS to XRF. Caenorhabditis Elegans as a Model for Environmental Epigenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1