{"title":"Joint disentangled representation and domain adversarial training for EEG-based cross-session biometric recognition in single-task protocols.","authors":"Honggang Liu, Xuanyu Jin, Dongjun Liu, Wanzeng Kong, Jiajia Tang, Yong Peng","doi":"10.1007/s11571-024-10214-w","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing adoption of wearable technologies highlights the potential of electroencephalogram (EEG) signals for biometric recognition. However, the intrinsic variability in cross-session EEG data presents substantial challenges in maintaining model stability and reliability. Moreover, the diversity within single-task protocols complicates achieving consistent and generalized model performance. To address these issues, we propose the Joint Disentangled Representation with Domain Adversarial Training (JDR-DAT) framework for EEG-based cross-session biometric recognition within single-task protocols. The JDR-DAT framework disentangles identity-specific features through mutual information estimation and incorporates domain adversarial training to enhance longitudinal robustness. Extensive experiments on longitudinal EEG data from two publicly available single-task protocol datasets-RSVP-based (Rapid Serial Visual Presentation) and MI-based (Motor Imagery)-demonstrate the efficacy of the JDR-DAT framework, with the proposed method achieving average accuracies of 85.83% and 96.72%, respectively.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"31"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757832/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10214-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing adoption of wearable technologies highlights the potential of electroencephalogram (EEG) signals for biometric recognition. However, the intrinsic variability in cross-session EEG data presents substantial challenges in maintaining model stability and reliability. Moreover, the diversity within single-task protocols complicates achieving consistent and generalized model performance. To address these issues, we propose the Joint Disentangled Representation with Domain Adversarial Training (JDR-DAT) framework for EEG-based cross-session biometric recognition within single-task protocols. The JDR-DAT framework disentangles identity-specific features through mutual information estimation and incorporates domain adversarial training to enhance longitudinal robustness. Extensive experiments on longitudinal EEG data from two publicly available single-task protocol datasets-RSVP-based (Rapid Serial Visual Presentation) and MI-based (Motor Imagery)-demonstrate the efficacy of the JDR-DAT framework, with the proposed method achieving average accuracies of 85.83% and 96.72%, respectively.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.