Monitoring nap deprivation-induced fatigue using fNIRS and deep learning.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-01-23 DOI:10.1007/s11571-025-10219-z
Pei Ma, Chenyang Pan, Huijuan Shen, Wushuang Shen, Hui Chen, Xuedian Zhang, Shuyu Xu, Jingzhou Xu, Tong Su
{"title":"Monitoring nap deprivation-induced fatigue using fNIRS and deep learning.","authors":"Pei Ma, Chenyang Pan, Huijuan Shen, Wushuang Shen, Hui Chen, Xuedian Zhang, Shuyu Xu, Jingzhou Xu, Tong Su","doi":"10.1007/s11571-025-10219-z","DOIUrl":null,"url":null,"abstract":"<p><p>Fatigue-induced incidents in transportation, aerospace, military, and other areas have been on the rise, posing a threat to human life and safety. The determination of fatigue states holds significant importance, especially through reliable and conveniently available physiological indicators. Here, a portable custom-built fNIRS system was used to monitor the fatigue state caused by nap deprivation. fNIRS signals in ten channels at the prefrontal cortex were collected, changes in blood oxygen concentration were analyzed, followed by a deep learning model to classify fatigue states. For the high-dimensionality and multi-channel characteristics of the fNIRS signal data, a novel 1D revised CNN-ResNet network was proposed based on the double-layer channel attenuation residual block. The results showed a 97.78% accuracy in fatigue state classification, significantly superior than several conventional methods. Furthermore, a fatigue-arousal experiment was designed to explore the feasibility of forced arousal of fatigued subjects through exercise stimulation. The fNIRS results showed a significant increase in brain activity with the conduction of exercise. The proposed method serves as a reliable tool for the evaluation of fatigue states, potentially reducing fatigue-induced harms and risks.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"30"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10219-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fatigue-induced incidents in transportation, aerospace, military, and other areas have been on the rise, posing a threat to human life and safety. The determination of fatigue states holds significant importance, especially through reliable and conveniently available physiological indicators. Here, a portable custom-built fNIRS system was used to monitor the fatigue state caused by nap deprivation. fNIRS signals in ten channels at the prefrontal cortex were collected, changes in blood oxygen concentration were analyzed, followed by a deep learning model to classify fatigue states. For the high-dimensionality and multi-channel characteristics of the fNIRS signal data, a novel 1D revised CNN-ResNet network was proposed based on the double-layer channel attenuation residual block. The results showed a 97.78% accuracy in fatigue state classification, significantly superior than several conventional methods. Furthermore, a fatigue-arousal experiment was designed to explore the feasibility of forced arousal of fatigued subjects through exercise stimulation. The fNIRS results showed a significant increase in brain activity with the conduction of exercise. The proposed method serves as a reliable tool for the evaluation of fatigue states, potentially reducing fatigue-induced harms and risks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在交通、航空航天、军事和其他领域,由疲劳引发的事故呈上升趋势,对人类的生命和安全构成威胁。疲劳状态的判定具有重要意义,尤其是通过可靠、便捷的生理指标。本文使用定制的便携式 fNIRS 系统来监测午睡剥夺导致的疲劳状态。该系统收集了前额叶皮层十个通道的 fNIRS 信号,分析了血氧浓度的变化,然后使用深度学习模型对疲劳状态进行分类。针对 fNIRS 信号数据的高维和多通道特点,提出了一种基于双层通道衰减残差块的新型一维修正 CNN-ResNet 网络。结果显示,疲劳状态分类的准确率为 97.78%,明显优于几种传统方法。此外,还设计了疲劳唤醒实验,以探索通过运动刺激强制唤醒疲劳受试者的可行性。fNIRS 结果显示,大脑活动随着运动的传导而显著增加。所提出的方法是评估疲劳状态的可靠工具,有可能减少疲劳引起的危害和风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model. Metacognition of one's strategic planning in decision-making: the contribution of EEG correlates and individual differences. Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. Neural oscillations predict flow experience. EEG-based cross-subject passive music pitch perception using deep learning models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1