Zhenzhen Pei, Yupeng Chen, Yang Zhang, Shan Zhang, Zhige Wen, Ruiting Chang, Boran Ni, Qing Ni
{"title":"Hirsutine mitigates ferroptosis in podocytes of diabetic kidney disease by downregulating the p53/GPX4 signaling pathway.","authors":"Zhenzhen Pei, Yupeng Chen, Yang Zhang, Shan Zhang, Zhige Wen, Ruiting Chang, Boran Ni, Qing Ni","doi":"10.1016/j.ejphar.2025.177289","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease worldwide, and podocyte ferroptosis plays a crucial role in its pathogenesis. Hirsutine (HS) reduces blood glucose levels and improve insulin resistance in diabetic mice, suggesting its potential use in diabetes treatment. Here, we established a db/db mouse model of DKD and administered HS for 8 weeks. We found that HS decreased the concentrations of iron, reactive oxygen species (ROS), and malondialdehyde (MDA) in renal tissues. Furthermore, HS treatment restored mitochondrial morphology, increased Glutathione Peroxidase 4(GPX4) levels, and decreased p53 levels, alleviating podocyte loss in the DKD mouse model. However, the effects of HS were reversed by the p53 activator Nutlin-3. Therefore, we propose HS may mitigate podocyte injury in DKD by regulating the p53/GPX4 pathway, providing a novel strategy for targeting podocyte ferroptosis in DKD.</p>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":" ","pages":"177289"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejphar.2025.177289","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease worldwide, and podocyte ferroptosis plays a crucial role in its pathogenesis. Hirsutine (HS) reduces blood glucose levels and improve insulin resistance in diabetic mice, suggesting its potential use in diabetes treatment. Here, we established a db/db mouse model of DKD and administered HS for 8 weeks. We found that HS decreased the concentrations of iron, reactive oxygen species (ROS), and malondialdehyde (MDA) in renal tissues. Furthermore, HS treatment restored mitochondrial morphology, increased Glutathione Peroxidase 4(GPX4) levels, and decreased p53 levels, alleviating podocyte loss in the DKD mouse model. However, the effects of HS were reversed by the p53 activator Nutlin-3. Therefore, we propose HS may mitigate podocyte injury in DKD by regulating the p53/GPX4 pathway, providing a novel strategy for targeting podocyte ferroptosis in DKD.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.