Zhikai Cao, Nan Wang, Xinrui Liu, Wenjun Deng, Rui Dong, Quan Jiang
{"title":"Mechanisms of Low Temperature-induced GH Resistance via TRPA1 Channel Activation in Male Nile Tilapia.","authors":"Zhikai Cao, Nan Wang, Xinrui Liu, Wenjun Deng, Rui Dong, Quan Jiang","doi":"10.1210/endocr/bqaf013","DOIUrl":null,"url":null,"abstract":"<p><p>Low temperatures significantly impact growth in ectothermic vertebrates, though the underlying mechanisms remain poorly understood. This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) channels in mediating low-temperature effects on growth performance and GH resistance in Nile tilapia (Oreochromis niloticus). Prolonged exposure to low temperature (16 °C for 35 days) impaired growth performance and induced GH resistance, characterized by elevated serum GH levels and decreased IGF-1 levels. Molecular analysis revealed tissue-specific upregulation of TRPA1 expression in the pituitary and liver under low-temperature conditions, concurrent with alterations in GH/IGF-1 axis-related gene expression. Pharmacological modulation of TRPA1 using an agonist mimicked low-temperature effects on the GH/IGF-1 axis, while an antagonist reversed cold-induced hormonal changes. In vitro experiments with tilapia hepatocytes demonstrated that TRPA1 activation decreased IGF-1 expression through calcium ion/calmodulin-dependent pathways and disrupted GH-induced JAK2/STAT5 signaling. Additionally, TRPA1 activation induced GH receptor degradation primarily through lysosomal pathways, with partial involvement of proteasomal mechanisms. This study is the first to reveal that TRPA1 channels play a crucial role in mediating the effects of low temperature on GH resistance in fish, providing new insights into temperature regulation of endocrine function. The evolutionary conservation of TRPA1 and the GH/IGF-1 axis suggests potential relevance to stress-induced endocrine dysfunction in other vertebrates, including mammals.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf013","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Low temperatures significantly impact growth in ectothermic vertebrates, though the underlying mechanisms remain poorly understood. This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) channels in mediating low-temperature effects on growth performance and GH resistance in Nile tilapia (Oreochromis niloticus). Prolonged exposure to low temperature (16 °C for 35 days) impaired growth performance and induced GH resistance, characterized by elevated serum GH levels and decreased IGF-1 levels. Molecular analysis revealed tissue-specific upregulation of TRPA1 expression in the pituitary and liver under low-temperature conditions, concurrent with alterations in GH/IGF-1 axis-related gene expression. Pharmacological modulation of TRPA1 using an agonist mimicked low-temperature effects on the GH/IGF-1 axis, while an antagonist reversed cold-induced hormonal changes. In vitro experiments with tilapia hepatocytes demonstrated that TRPA1 activation decreased IGF-1 expression through calcium ion/calmodulin-dependent pathways and disrupted GH-induced JAK2/STAT5 signaling. Additionally, TRPA1 activation induced GH receptor degradation primarily through lysosomal pathways, with partial involvement of proteasomal mechanisms. This study is the first to reveal that TRPA1 channels play a crucial role in mediating the effects of low temperature on GH resistance in fish, providing new insights into temperature regulation of endocrine function. The evolutionary conservation of TRPA1 and the GH/IGF-1 axis suggests potential relevance to stress-induced endocrine dysfunction in other vertebrates, including mammals.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.