An injectable, self-healing, anti-infective, and anti-inflammatory novel glycyrrhizic acid hydrogel for promoting acute wound healing and regeneration.
{"title":"An injectable, self-healing, anti-infective, and anti-inflammatory novel glycyrrhizic acid hydrogel for promoting acute wound healing and regeneration.","authors":"Qiyou Guo, Ruojing Li, Yeying Zhao, Huibo Wang, Wenqiang Luo, Junhao Zhang, Zhenlu Li, Peige Wang","doi":"10.3389/fbioe.2024.1525644","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Bacterial infection, a complex wound microenvironment, and a persistent inflammatory response in acute wounds can result in delayed healing and abnormal scar formation, thereby compromising the normal function and aesthetic appearance of skin tissue. This issue represents one of the most challenging problems in clinical practice. This study aims to develop a hydrogel dressing specifically designed for the treatment of acute wounds, providing immediate and effective protection for the affected areas. This innovation seeks to offer a novel and advanced solution for the management of acute wounds.</p><p><strong>Methods: </strong>In this study, a composite hydrogel scaffold was synthesized through the reaction between oxidized glycyrrhizic acid and carboxymethyl chitosan Schiff base. The material properties of the hydrogel were systematically characterized, and its biocompatibility and antibacterial efficacy were rigorously evaluated. A rat wound model was established to compare multiple groups, thereby assessing the impact of the hydrogel on the wound microenvironment and wound repair.</p><p><strong>Results: </strong>The results demonstrated that the OGA-CMCS hydrogel exhibited excellent injectability, biocompatibility, and antibacterial properties. It was capable of enhancing the wound microenvironment, which in turn influenced the polarization of macrophages from the M1 to the M2 phenotype, thereby mitigating the inflammatory response, promoting angiogenesis and granulation tissue regeneration, and accelerating wound healing.</p><p><strong>Discussion: </strong>This study successfully developed a novel glycyrrhizin-based hydrogel dressing, which not only introduces innovative approaches for the emergency management of acute surface wound defects but also provides an experimental foundation. It is anticipated to contribute significantly to addressing relevant clinical challenges.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1525644"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1525644","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Bacterial infection, a complex wound microenvironment, and a persistent inflammatory response in acute wounds can result in delayed healing and abnormal scar formation, thereby compromising the normal function and aesthetic appearance of skin tissue. This issue represents one of the most challenging problems in clinical practice. This study aims to develop a hydrogel dressing specifically designed for the treatment of acute wounds, providing immediate and effective protection for the affected areas. This innovation seeks to offer a novel and advanced solution for the management of acute wounds.
Methods: In this study, a composite hydrogel scaffold was synthesized through the reaction between oxidized glycyrrhizic acid and carboxymethyl chitosan Schiff base. The material properties of the hydrogel were systematically characterized, and its biocompatibility and antibacterial efficacy were rigorously evaluated. A rat wound model was established to compare multiple groups, thereby assessing the impact of the hydrogel on the wound microenvironment and wound repair.
Results: The results demonstrated that the OGA-CMCS hydrogel exhibited excellent injectability, biocompatibility, and antibacterial properties. It was capable of enhancing the wound microenvironment, which in turn influenced the polarization of macrophages from the M1 to the M2 phenotype, thereby mitigating the inflammatory response, promoting angiogenesis and granulation tissue regeneration, and accelerating wound healing.
Discussion: This study successfully developed a novel glycyrrhizin-based hydrogel dressing, which not only introduces innovative approaches for the emergency management of acute surface wound defects but also provides an experimental foundation. It is anticipated to contribute significantly to addressing relevant clinical challenges.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.