Two-pore channel regulators - Who is in control?

IF 3.2 3区 医学 Q2 PHYSIOLOGY Frontiers in Physiology Pub Date : 2025-01-10 eCollection Date: 2024-01-01 DOI:10.3389/fphys.2024.1534071
Rebecca Deutsch, Veronika Kudrina, Marc Freichel, Christian Grimm
{"title":"Two-pore channel regulators - Who is in control?","authors":"Rebecca Deutsch, Veronika Kudrina, Marc Freichel, Christian Grimm","doi":"10.3389/fphys.2024.1534071","DOIUrl":null,"url":null,"abstract":"<p><p>Two-pore channels (TPCs) are adenine nucleotide and phosphoinositide regulated cation channels. NAADP activates and ATP blocks TPCs, while the endolysosomal phosphoinositide PI(3,5)P<sub>2</sub> activates TPCs. TPCs are ubiquitously expressed including expression in the innate as well as the adaptive immune system. In the immune system TPCs are found, e.g. in macrophages, mast cells and T cells. In cytotoxic T cells, NAADP activates TPCs on cytolytic granules to stimulate exocytosis and killing. TPC inhibition or knockdown increases the number of regulator T cells in a transmembrane TNF/TNFR2 dependent manner, contributing to anti-inflammatory effects in a murine colitis model. TPC1 regulates exocytosis in mast cells <i>in vivo</i> and <i>ex vivo</i>, and TPC1 deficiency in mast cells augments systemic anaphylaxis in mice. In bone marrow derived macrophages NAADP regulates TPCs to control phagocytosis in a calcineurin/dynamin dependent manner, which was recently challenged by data, claiming no effect of TPCs on phagocytosis in macrophages but instead a role in phagosome resolution, a process thought to be mediated by vesiculation and tubulation. In this review we will discuss evidence and recent findings on the different roles of TPCs in immune cell function as well as evidence for adenine nucleotides being involved in these processes. Since the adenine nucleotide effects (NAADP, ATP) are mediated by auxiliary proteins, respectively, another major focus will be on the complex network of TPC regulatory proteins that have been discovered recently.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"15 ","pages":"1534071"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757267/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1534071","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-pore channels (TPCs) are adenine nucleotide and phosphoinositide regulated cation channels. NAADP activates and ATP blocks TPCs, while the endolysosomal phosphoinositide PI(3,5)P2 activates TPCs. TPCs are ubiquitously expressed including expression in the innate as well as the adaptive immune system. In the immune system TPCs are found, e.g. in macrophages, mast cells and T cells. In cytotoxic T cells, NAADP activates TPCs on cytolytic granules to stimulate exocytosis and killing. TPC inhibition or knockdown increases the number of regulator T cells in a transmembrane TNF/TNFR2 dependent manner, contributing to anti-inflammatory effects in a murine colitis model. TPC1 regulates exocytosis in mast cells in vivo and ex vivo, and TPC1 deficiency in mast cells augments systemic anaphylaxis in mice. In bone marrow derived macrophages NAADP regulates TPCs to control phagocytosis in a calcineurin/dynamin dependent manner, which was recently challenged by data, claiming no effect of TPCs on phagocytosis in macrophages but instead a role in phagosome resolution, a process thought to be mediated by vesiculation and tubulation. In this review we will discuss evidence and recent findings on the different roles of TPCs in immune cell function as well as evidence for adenine nucleotides being involved in these processes. Since the adenine nucleotide effects (NAADP, ATP) are mediated by auxiliary proteins, respectively, another major focus will be on the complex network of TPC regulatory proteins that have been discovered recently.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
5.00%
发文量
2608
审稿时长
14 weeks
期刊介绍: Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Effects of 6-week sprint interval training compared to traditional training on the running performance of distance runners: a randomized controlled trail. Work rate adjustments needed to maintain heart rate and RPE during high-intensity interval training in the heat. Editorial: Integrating machine learning with physics-based modeling of physiological systems. Effect of Cd-Zn compound contamination on the physiological response of broad bean and aphids. Effect of self-paced sprint interval training and low-volume HIIT on cardiorespiratory fitness: the role of heart rate and power output.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1