Noa A Linthorst, Bart Jm van Vlijmen, Jeroen Cj Eikenboom
{"title":"The future of siRNA-mediated approaches to treat von Willebrand disease.","authors":"Noa A Linthorst, Bart Jm van Vlijmen, Jeroen Cj Eikenboom","doi":"10.1080/17474086.2025.2459259","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The clinical management of the inherited bleeding disorder von Willebrand disease (VWD) focuses on normalizing circulating levels of von Willebrand factor (VWF) and factor VIII (FVIII) to prevent or control bleeding events. The heterogeneous nature of VWD, however, complicates effective disease management and development of universal treatment guidelines.</p><p><strong>Areas covered: </strong>The current treatment modalities of VWD and their limitations are described and why this prompts the development of new treatment approaches. In particular, RNA-based therapeutics have gained significant interest because of their ability to reversibly alter gene expression with long-term efficacy. In the field of VWD, small-interfering RNAs (siRNAs) have been explored through various strategies to improve disease phenotypes. These different approaches are discussed as well as their potential impact on reshaping the future therapeutic landscape.</p><p><strong>Expert opinion: </strong>Current treatments for VWD often require frequent intravenous administration of VWF concentrates or desmopressin, with only short-term benefits. Moreover, remaining circulating mutant VWF can cause detrimental effects. Allele-selective siRNA-based therapies could provide more reliable and long-term disease correction by specifically targeting mutant <i>VWF</i>. This approach could be applied to a large part of the population aligning with the growing emphasis on personalized treatment and patient-centered care in VWD management.</p>","PeriodicalId":12325,"journal":{"name":"Expert Review of Hematology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17474086.2025.2459259","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The clinical management of the inherited bleeding disorder von Willebrand disease (VWD) focuses on normalizing circulating levels of von Willebrand factor (VWF) and factor VIII (FVIII) to prevent or control bleeding events. The heterogeneous nature of VWD, however, complicates effective disease management and development of universal treatment guidelines.
Areas covered: The current treatment modalities of VWD and their limitations are described and why this prompts the development of new treatment approaches. In particular, RNA-based therapeutics have gained significant interest because of their ability to reversibly alter gene expression with long-term efficacy. In the field of VWD, small-interfering RNAs (siRNAs) have been explored through various strategies to improve disease phenotypes. These different approaches are discussed as well as their potential impact on reshaping the future therapeutic landscape.
Expert opinion: Current treatments for VWD often require frequent intravenous administration of VWF concentrates or desmopressin, with only short-term benefits. Moreover, remaining circulating mutant VWF can cause detrimental effects. Allele-selective siRNA-based therapies could provide more reliable and long-term disease correction by specifically targeting mutant VWF. This approach could be applied to a large part of the population aligning with the growing emphasis on personalized treatment and patient-centered care in VWD management.
期刊介绍:
Advanced molecular research techniques have transformed hematology in recent years. With improved understanding of hematologic diseases, we now have the opportunity to research and evaluate new biological therapies, new drugs and drug combinations, new treatment schedules and novel approaches including stem cell transplantation. We can also expect proteomics, molecular genetics and biomarker research to facilitate new diagnostic approaches and the identification of appropriate therapies. Further advances in our knowledge regarding the formation and function of blood cells and blood-forming tissues should ensue, and it will be a major challenge for hematologists to adopt these new paradigms and develop integrated strategies to define the best possible patient care. Expert Review of Hematology (1747-4086) puts these advances in context and explores how they will translate directly into clinical practice.