TEMPO-oxidized cellulose fiber from spent coffee ground: Studying their properties as a function of particle size.

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Heliyon Pub Date : 2025-01-02 eCollection Date: 2025-01-15 DOI:10.1016/j.heliyon.2025.e41646
Hooriyeh Rahmani Khoshk, Marzieh Moeenfard
{"title":"TEMPO-oxidized cellulose fiber from spent coffee ground: Studying their properties as a function of particle size.","authors":"Hooriyeh Rahmani Khoshk, Marzieh Moeenfard","doi":"10.1016/j.heliyon.2025.e41646","DOIUrl":null,"url":null,"abstract":"<p><p>The applicability of cellulose and its derivatives is greatly depends on their attributes such as aspect ratio, morphology, surface chemistry, crystallinity, as well as their thermal and mechanical properties. However, these attributes can alter according to the utilized raw material, size classifications, extraction techniques, or fibrillation methods. Among these, the effect of raw material particle size on cellulose properties has received limited attention in scientific studies. Therefore, this study aimed to investigate the effect of different particle sizes of spent coffee grounds (SCG) (A: 850-1400 μm, B: 500-850 μm, C: 355-500 μm) on the physicochemical properties of TEMPO-oxidized cellulose (TOC). The freez-dried TOC was characterized in terms of functional groups, morphology, width diameter, crystallinity, carboxyl content, charge density, thermal properties, and re-dispersibility in water. Successful oxidation in all samples was confirmed by the presence of a sodium carboxylate peak in the FTIR spectrum. Higher thermal resistance, carboxyl content, as well as improved physical stability of the re-dispersed suspension were observed in A-TOC sample. Unlike B and C-TOC, A-TOC was favored sample for obtaining fibrillated cellulose with crystallinity of 49.92 %. In contrast, production process significantly damaged the crystalline regions in finer particles and reduced the crystallinity of B and C-TOC to values ranging from 35 to 37 %. In conclusion, finer SCG particles were highly sensitive to reaction conditions and showed high tendency toward dissolution, which make them unsuitable candidates for fiber fabrication. In terms of SCG, only coarse particles (A: 850-1400 μm) were found to be ideal for producing oxidized cellulose fibers.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 1","pages":"e41646"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2025.e41646","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The applicability of cellulose and its derivatives is greatly depends on their attributes such as aspect ratio, morphology, surface chemistry, crystallinity, as well as their thermal and mechanical properties. However, these attributes can alter according to the utilized raw material, size classifications, extraction techniques, or fibrillation methods. Among these, the effect of raw material particle size on cellulose properties has received limited attention in scientific studies. Therefore, this study aimed to investigate the effect of different particle sizes of spent coffee grounds (SCG) (A: 850-1400 μm, B: 500-850 μm, C: 355-500 μm) on the physicochemical properties of TEMPO-oxidized cellulose (TOC). The freez-dried TOC was characterized in terms of functional groups, morphology, width diameter, crystallinity, carboxyl content, charge density, thermal properties, and re-dispersibility in water. Successful oxidation in all samples was confirmed by the presence of a sodium carboxylate peak in the FTIR spectrum. Higher thermal resistance, carboxyl content, as well as improved physical stability of the re-dispersed suspension were observed in A-TOC sample. Unlike B and C-TOC, A-TOC was favored sample for obtaining fibrillated cellulose with crystallinity of 49.92 %. In contrast, production process significantly damaged the crystalline regions in finer particles and reduced the crystallinity of B and C-TOC to values ranging from 35 to 37 %. In conclusion, finer SCG particles were highly sensitive to reaction conditions and showed high tendency toward dissolution, which make them unsuitable candidates for fiber fabrication. In terms of SCG, only coarse particles (A: 850-1400 μm) were found to be ideal for producing oxidized cellulose fibers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
期刊最新文献
Community-based model for management and follow-up by non-physician healthcare workers to improve awareness, treatment, and control of hypertension: The COTRACO study protocol. Identification of microorganisms at different times in a bioleaching process for the recovery of gold and silver from minerals in oxide form. On-farm diversity and production challenges in Ethiopian tef [Eragrostis tef ((Zuccagni) Trotter)] landraces from Arsi zone, Ethiopia: Implications for breeding and conservation. Spondias purpurea L. (Anacardiaceae) fruits flours at different maturation stages: Drying kinetics, mathematical modelling, characterization and correlation analysis. Blood levels of cytokines highlight the role of inflammation in Alzheimer's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1