{"title":"AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding.","authors":"Youlei Shen, Jiming Yang, Ziyuan Ma, Yingde Li, Wanqing Dong, Tingyu Duan","doi":"10.1007/s00572-025-01180-0","DOIUrl":null,"url":null,"abstract":"<p><p>Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking. In a glasshouse study we investigated the effects of an AM fungus (Acaulospora delicata), a foliar grass endophyte (Epichloë), and the insect pest Spodoptera frugiperda (fall armyworm, FAW) on plant growth, defense enzyme activity, and hormone concentrations of the important pasture grass Lolium perenne. Additionally, we assessed the selective behavior of FAW larvae in response to these interactions using olfactometer tests. Our results showed that the AM fungus and its co-colonization with Epichloë endophytes increased aboveground biomass, while Epichloë endophytes alone had no significant impact on ryegrass aboveground biomass. In contrast, FAW reduced aboveground biomass. The Epichloë endophytes and FAW significantly decreased the mycorrhizal colonization rate by 21.67% and 30.16%, respectively. Interestingly, compared to non-mycorrhizal plants, AM fungus colonized plants were more attractive to FAW larvae feeding, and the defense enzyme activity was not discernibly affected by any experimental treatments. The interactions of the AM fungus and Epichloë endophyte increased the jasmonic acid concentrations by 24.29% and decreased trasylol activity by 11.75% in the host plants under FAW attack. Neither the AM fungus nor Epichloë endophyte influenced the relative growth rate (RGR) of FAW. Overall, the AM fungus had a greater positive effect on plant growth than the Epichloë endophyte, regardless of FAW larvae infestation.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 1","pages":"7"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01180-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking. In a glasshouse study we investigated the effects of an AM fungus (Acaulospora delicata), a foliar grass endophyte (Epichloë), and the insect pest Spodoptera frugiperda (fall armyworm, FAW) on plant growth, defense enzyme activity, and hormone concentrations of the important pasture grass Lolium perenne. Additionally, we assessed the selective behavior of FAW larvae in response to these interactions using olfactometer tests. Our results showed that the AM fungus and its co-colonization with Epichloë endophytes increased aboveground biomass, while Epichloë endophytes alone had no significant impact on ryegrass aboveground biomass. In contrast, FAW reduced aboveground biomass. The Epichloë endophytes and FAW significantly decreased the mycorrhizal colonization rate by 21.67% and 30.16%, respectively. Interestingly, compared to non-mycorrhizal plants, AM fungus colonized plants were more attractive to FAW larvae feeding, and the defense enzyme activity was not discernibly affected by any experimental treatments. The interactions of the AM fungus and Epichloë endophyte increased the jasmonic acid concentrations by 24.29% and decreased trasylol activity by 11.75% in the host plants under FAW attack. Neither the AM fungus nor Epichloë endophyte influenced the relative growth rate (RGR) of FAW. Overall, the AM fungus had a greater positive effect on plant growth than the Epichloë endophyte, regardless of FAW larvae infestation.
期刊介绍:
Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure.
Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.